A mechanical assembly aims to remove 6 degree-of-freedom (DOF) motion between two or more parts using features such as fasteners, integral attachments, and mating surfaces, all of which act as constraints. The locations, orientations, and quantity of these constraints directly influence the effectiveness of a constraint configuration to eliminate DOF; therefore, constraint design decisions are crucial to the performance of a mechanical assembly. The design tool presented in this paper uses an analysis tool developed by the authors to explore a user-specified constraint design space and help the designer make informed decisions based on quantitative data so as to optimize constraint locations and orientations. The utility of the design tool is demonstrated with an assembly case study that contains both threaded fasteners and integral attachments. The results identify the opportunity for significant improvements by separately exploring individual design spaces associated with some constraints and further gains through a search of a multidimensional design space that leverages interaction effects between the location and orientation variables. The example also highlights how the tool can help identify nonintuitive solutions such as nonrectilinear, nonplanar parting lines. A trade-off study demonstrates how the design tool can quantitatively aid in optimizing the total number of constraints. Adding constraints generally improves an assembly's performance at the expense of increased redundancy, which can cause locked-in stresses and assembly inaccuracies, so the design tools helps identify new/removable constraints that offer the greatest/least contribution to the overall part constraint configuration. Through these capabilities, this design tool provides useful data to optimize and understand mechanical assembly performance variables.

References

1.
Luscher
,
A.
,
1996
, “
Part Nesting as a Plastic Snap-Fit Attachment Strategy
,”
ANTEC 1996 Society of Plastic Engineers Annual Technical Conference and Exhibit
,
Indianapolis, IN
, SPE Press.
2.
De Meter
,
E. C.
,
1993
, “
Selection of Fixture Configuration for the Maximization of Mechanical Leverage
,”
Proceedings of the 1993 ASME Winter Annual Meeting
,
New Orleans, LA
, Vol. 64, pp.
491
506
.
3.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
,
1997
, “
A Variational Method of Robust Fixture Configuration Design for 3-D Workpieces
,”
ASME J. Manuf. Sci. Eng.
,
119
, pp.
593
602
.10.1115/1.2831192
4.
Chou
,
Y.-C.
,
Chandru
, V
.
, and
Barash
,
M. M.
,
1989
, “
A Mathematical Approach to Automatic Configuration of Machining Fixtures: Analysis and Synthesis
,”
Trans. ASME J. Eng. Ind.
,
111
(
4
), pp.
299
306
.10.1115/1.3188764
5.
Lakshminarayana
,
K.
,
1978
, “
Mechanics of Form Closure
,” New York, ASME Paper No. 78-DET-32.
6.
Salisbury
,
J. K.
, and
Roth
,
B.
,
1983
, “
Kinematic and Force Analysis of Articulated Mechanical Hands
,”
J. Mech., Transm., Autom. Des.
,
105
(
1
), pp.
35
41
.10.1115/1.3267342
7.
Kerr
,
J.
, and
Roth
,
B.
,
1986
, “
Analysis of Multifingered Hands
,”
Int. J. Rob. Res.
,
4
(
4
), pp.
3
17
.10.1177/027836498600400401
8.
Hirai
,
S.
, and
Asada
,
H.
,
1993
, “
Kinematics and Statics of Manipulation Using the Theory of Polyhedral Convex Cones
,”
Int. J. Rob. Res.
,
12
(
5
), pp.
434
447
.10.1177/027836499301200504
9.
Xiong
,
Y.
,
Ding
,
H.
, and
Wang
,
M.
,
2002
, “
Quantitative Analysis of Inner Force Distribution and Load Capacity of Grasps and Fixtures
,”
ASME J. Manuf. Sci. Eng.
,
124
, pp.
444
45
510.1115/1.1459089
10.
Marin
,
R. A.
, and
Ferreira
,
P. M.
,
2001
, “
Kinematic Analysis and Synthesis of Deterministic 3-2-1 Locator Schemes for Machining Fixtures
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
708
719
.10.1115/1.1381396
11.
Marin
,
R. A.
, and
Ferreira
,
P. M.
,
2002
, “
Optimal Placement of Fixture Clamps: Minimizing the Maximum Clamping Forces
,”
Trans. ASME J. Manuf. Sci. Eng.
,
124
(
3
), pp.
686
694
.10.1115/1.1469520
12.
Marin
,
R. A.
, and
Ferreira
,
P. M.
,
2002
, “
Optimal Placement of Fixture Clamps: Maintaining Form Closure and Independent Regions of Form Closure
,”
Trans. ASME J. Manuf. Sci. Eng.
,
124
(
3
), pp.
676
685
.10.1115/1.1471527
13.
Ding
,
D.
,
Liu
,
Y. H.
,
Wang
,
M.
, and
Wang
,
S.
,
2001
, “
Automatic Selection of Fixturing Surfaces and Fixturing Points for Polyhedral Workpieces
,”
IEEE Trans. Rob. Autom.
,
17
(
6
), pp.
833
841
.10.1109/70.976003
14.
Schimmels
,
J. M.
, and
Peshkin
,
M. A.
,
1992
, “
Admittance Matrix Design for Force-Guided Assembly
,”
IEEE Trans. Rob. Autom.
,
8
(
2
), pp.
213
227
.10.1109/70.134275
15.
Asada
,
H.
, and
By
,
A. B.
,
1985
, “
Kinematic Analysis of Workpart Fixturing for Flexible Assembly With Automatically Reconfigurable Fixtures
,”
IEEE J. Rob. Autom.
,
2
, pp.
86
94
.
16.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
, New York, NY.
17.
Lee
,
J. D.
,
Hu
,
S. J.
, and
Ward
,
A. C.
,
1999
, “
Workspace Synthesis for Flexible Fixturing of Stampings
,”
ASME J. Manuf. Sci. Eng.
,
121
(
3
), pp.
478
484
.10.1115/1.2832706
18.
Lee
,
J. D.
, and
Haynes
,
L. S.
, “
Finite-Element Analysis of Flexible Fixturing System
,”
Trans. ASME J. Eng. Ind.
,
109
(
2
), pp.
134
139
.10.1115/1.3187103
19.
Menassa
,
R. J.
, and
DeVries
,
W. R.
,
1988
, “
Optimization Methods Applied to Selecting Support Positions in Fixture Design
,”
Proceedings of the USA-Japan Symposium on Flexible Automation—Crossing Bridges: Advances in Flexible Automation and Robotics
,
Minneapolis, MN
.
20.
Gui
,
X. W.
,
Fuh
,
J. Y. H.
, and
Nee
,
A. Y. C.
,
1996
, “
Modeling of Frictional Elastic Fixture-Workpiece System for Improving Location Accuracy
,”
IIE Trans.
,
28
(
10
), pp.
821
827
.
21.
Slocum
,
A. H.
,
1992
,
Precision Machine Design
,
Prentice-Hall
,
New Jersey
.
22.
Whitehead
,
T. N.
,
1954
,
The Design and Use of Instruments and Accurate Mechanism
,
Dover Press
,
New York
.
23.
Blanding
,
D.
,
1999
,
Exact Constraint: Machine Design Using Kinematic Principles
,
ASME Press
,
New York
.
24.
Kriegel
,
J. M.
,
1994
, “
Exact Constraint Design
,”
ASME International M E Congress and Exhibition (Winter Annual Meeting), Paper No. 94-WA/DE-18.
25.
Downey
,
K.
,
Parkinson
,
A.
, and
Chase
,
K.
,
2003
, “
An Introduction to Smart Assemblies for Robust Design
,”
Res. Eng. Des.
,
14
, pp.
236
246
.10.1007/s00163-003-0041-5
26.
Soderberg
,
R.
,
Lindkvist
,
L.
, and
Dahlstrom
,
S.
,
2006
, “
Computer-Aided Robustness Analysis for Compliant Assemblies
,”
J. Eng. Des.
,
17
(
5
), pp.
411
428
.10.1080/09544820500275800
27.
Whitney
,
D.
,
2000
,
Mechanical Assemblies
,
Oxford University Press
, New York, NY.
28.
Whitney
,
D.
,
Mantripragada
,
R.
,
Adams
,
J. D.
,
Rhee
,
S. J.
,
1999
, “
Designing Assemblies
,”
Res. Eng. Des.
,
11
, pp.
229
253
.10.1007/s001630050017
29.
Mantripragada
,
R.
, and
Whitney
,
D. E.
,
1998
, “
The Datum Flow Chain: A Systematic Approach to Assembly Design and Modeling
,”
Res. Eng. Des.
,
10
, pp.
150
165
.10.1007/BF01607157
30.
Adams
,
J. D.
,
Gerbino
,
S.
,
Whitney
, and
Daniel
,
E.
,
1999
, “
Application of Screw Theory to Motion Analysis of Assemblies of Rigid Parts
,”
Proceedings of the IEEE International Symposium on Assembly and Task Planning
,
Porto, Portugal
, pp.
75
80
.
31.
Adams
,
J. D.
, and
Whitney
,
D. E.
, “
Application of Screw Theory to Constraint Analysis of Assemblies of Rigid Parts
,”
Proceedings of the IEEE International Symposium on Assembly and Task Planning
,
Porto, Portugal
, pp.
69
74
.
32.
Rusli
,
L.
,
Luscher
,
A.
, and
Schmiedeler
,
J.
,
2012
, “
Analysis of Constraint Configurations in Mechanical Assembly via Screw Theory
,”
ASME J. Mech. Des
,
134
(
2
), p.
021006
.10.1115/1.4005622
You do not currently have access to this content.