Due to dynamic effects, clearances, manufacturing and assembly errors in form-closed cam mechanisms, the follower jump can also occur. For conjugate cam mechanisms a technique to avoid the follower jump without the use of a spring involves making the conjugate cam profiles bigger than the kinematical ones by adding an external offset. This strategy produces an interference fit between the conjugate cam profiles and the follower train. This paper presents an ordered procedure to study the influence that the planned interference fit has on the evaluation of the contact forces, the expected fatigue life of the rollers, contact pressures and the lubrication conditions. The study is based on a conjugate cam mechanism with translational roller followers used in a real automatic process for manufacturing muselets. A three-degree-of-freedom dynamic model is proposed and the Hertzian theory for general profiles is used to model the nonlinear contact stiffness between the cams and the crowned rollers. The dynamic model predicts that it is difficult to obtain conjugate cam mechanisms with an infinite expected fatigue life of the rollers just by considering typical achievable manufacturing errors or clearances, and as happens in reality, a set-up process is highly recommended. The procedure is also tested with measured manufacturing errors on a coordinate measure machine—CMM—and with measured radial internal clearances for the rollers measured by an experimental apparatus. Also, to evaluate lubrication conditions, surface finishing measurements have been taken of the cams and the rollers with a surface profiler.

References

1.
Chang
,
W. T.
, and
Wu
,
L. L.
,
2008
, “
A Simplified Method for Examining Profile Deviations of Conjugate Disk Cams
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052601
.10.1115/1.2885191
2.
Chang
,
W. T.
,
Wu
,
L. I.
, and
Liu
,
C. H.
,
2009
, “
Inspecting Profile Deviations of Conjugate Disk Cams by a Rapid Indirect Method
,”
Mech. Mach. Theory
,
44
(
8
), pp.
1580
1594
.10.1016/j.mechmachtheory.2009.01.002
3.
Lee
,
T. M.
,
Lee
,
D. Y.
,
Lee
,
H. C.
, and
Yang
,
M. Y.
,
2009
, “
Design of Cam-Type Transfer Unit Assisted With Conjugate Cam and Torque Control Cam
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1144
1155
.10.1016/j.mechmachtheory.2008.09.004
4.
Norton
,
R. L.
,
2002
,
Cam Design and Manufacturing Handbook
,
Industrial Press, Inc.
,
New York
, pp.
522
523
, pp. 413–416, pp. 465–474, pp. 433–434.
5.
Tang
,
X. M.
,
Wu
,
S. J.
,
Mei
,
S. Q.
, and
Chen
,
J.
,
2012
, “
Rigid-Flexible Coupling Dynamics Simulation of Conjugate Cam in Beating-Up Mechanism
,”
J. Tianjin Polytechnic Univ.
,
31
(
2
), pp.
27
31
.
6.
Wu
,
L. J.
,
Li
,
A. P.
,
Liu
,
X. M.
, and
Yang
,
G. W.
,
2010
, “
Improved Design and Dynamic Characteristics Research for Printing Machinery
,”
J. Donghua Univ. (English Edition)
,
27
(
5
), pp.
694
699
.
7.
Xiao
,
W.
, and
Long
,
Z.
,
2009
, “
Dynamic Modeling and Simulation Analysis of Rapier Loom Conjugate-Cam Weft Insertion Mechanism
,”
Proceedings of the 2nd International Conference on Modeling and Simulation, ICMS2009
, Vol.
5
, pp.
506
510
.
8.
Demeulenaere
,
B.
,
Spaepen
,
P.
,
Masselis
,
S.
,
Cornelissen
,
P.
,
Pinte
,
G.
,
Hemelsoen
,
J.
,
Boonen
,
R.
,
Roelstraete
,
K.
,
Desmet
,
W.
,
Swevers
,
J.
, and
De Schutter
,
J.
,
2008
, “
Experimental Validation of Input Torque Balancing Applied to Weaving Machinery
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022307
.10.1115/1.2821386
9.
Demeulenaere
,
B.
, and
De Schutter
,
J.
,
2005
, “
Input Torque Balancing Using an Inverted Cam Mechanism
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
887
900
.10.1115/1.1876452
10.
Skowronski
, V
. J.
, and
Turner
,
J. U.
,
1997
, “
Using Monte-Carlo Variance Reduction in Statistical Tolerance Synthesis
,”
CAD Comput. Aided Des.
,
29
(
1
), pp.
63
69
.10.1016/S0010-4485(96)00050-4
11.
Cardona
,
S.
,
Zayas
,
E. E.
,
Jordi
,
L.
, and
Català
,
P.
,
2013
, “
Synthesis of Displacement Functions by Bézier Curves in Constant-Breadth Cams With Parallel Flat-Faced Double Translating and Oscillating Followers
,”
Mech. Mach. Theory
,
62
(
4
), pp.
51
62
.10.1016/j.mechmachtheory.2012.11.004
12.
Cardona
,
S.
,
ad Clos
,
D.
,
2000
,
Teoria de Màquines
,
UPC
,
Barcelona
, pp.
100
103
.
13.
Rothbart
,
H. A.
,
1985
,
Mechanical Design and Systems Handbook
,
McGraw-Hill
,
New York
, Chap. 7.15.
14.
Chavan
,
U.
, and
Joshi
,
S.
,
2011
, “
Synthesis of Cam Profile Using Classical Splines and the Effect of Knot Locations on the Acceleration, Jump, and Interface Force of Cam Follower System
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.,
225
(
12
), pp.
3019
3030
.10.1177/0954406211405926
15.
Gatti
,
G.
, and
Mundo
,
D.
,
2010
, “
On the Direct Control of Follower Vibrations in Cam-Follower Mechanisms
,”
Mech. Mach. Theory
,
45
(
1
), pp.
23
35
.10.1016/j.mechmachtheory.2009.07.010
16.
Flocker
,
F. W.
,
2012
, “
A Versatile Cam Profile for Controlling Interface Force in Multiple-Dwell Cam-Follower Systems
,”
ASME J. Mech. Des.
,
134
(
9
), p.
094501
.10.1115/1.4007146
17.
Rothbart
,
H. A.
,
2004
,
Cam Design Handbook
,
McGraw-Hill
,
New York
, Chap. 9, pp.
251
260
, Chap. 10, pp. 285–287.
18.
Lindholm
,
P.
,
Björklund
,
S.
, and
Cortes
,
M. C.
,
2003
, “
Characterisation of Wear on a Cam Follower System in a Diesel Engine
,”
Wear
,
254
(
11
), pp.
1199
1207
.10.1016/S0043-1648(03)00335-1
19.
Cheng
,
H. Y.
,
2002
, “
Optimum Tolerances Synthesis for Globoidal Cam Mechanisms
,”
JSME Int. J. Ser. C
,
45
, pp.
519
526
.10.1299/jsmec.45.519
20.
Kim
,
H. R.
,
1977
, “
Stochastic Analysis of Manufacturing Errors in Cam Mechanisms
,” Ph.D. thesis, McMaster University, Hamilton, Ontario Canada.
21.
Chang
,
W. T.
, and
Wu
,
L.
,
2013
, “
Tolerance Analysis and Synthesis of Cam-Modulated Linkages
,”
Math. Comput. Model.
,
57
(
3–4
), pp.
641
660
.10.1016/j.mcm.2012.08.003
You do not currently have access to this content.