Different from explicit customer needs that can be identified directly by analyzing raw data from the customers, latent customer needs are often implied in the semantics of use cases underlying customer needs information. Due to difficulties in understanding semantic implications associated with use cases, typical text mining-based methods can hardly identify latent customer needs, as opposite to keywords mining for explicit customer needs. This paper proposes a two-layer model for latent customer needs elicitation through use case reasoning. The first layer emphasizes sentiment analysis, aiming to identify explicit customer needs based on the product attributes and ordinary use cases extracted from online product reviews. Fuzzy support vector machines (SVMs) are developed to build sentiment prediction models based on a list of affective lexicons. The second layer is geared toward use case analogical reasoning, to identify implicit characteristics of latent customer needs by reasoning the semantic similarities and differences analogically between the ordinary and extraordinary use cases. Case-based reasoning (CBR) is utilized to perform case retrieval and case adaptation. A case study of Kindle Fire HD 7 in. tablet is developed to illustrate the potential and feasibility of the proposed method.

References

1.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2003
,
Product Design and Development
,
McGraw-Hill
,
New York
.
2.
Crandall
,
B.
,
Klein
,
G.
, and
Hoffman
,
R.
,
2006
,
Working Minds: A Practitioner's Guide to Cognitive Task Analysis
,
The MIT Press
,
Cambridge, MA
.
3.
von Hippel
,
E.
,
1986
, “
Lead Users: A Source of Novel Product Concepts
,”
Manage. Sci.
,
32
(
7
), pp.
791
805
.10.1287/mnsc.32.7.791
4.
Lin
,
J.
, and
Seepersad
,
C. C.
,
2007
, “
Empathic Lead Users: The Effects of Extraordinary User Experiences on Customer Needs Analysis and Product Redesign
,”
ASME
Paper No. DETC2007-35302.10.1115/DETC2007-35302
5.
Zhou
,
F.
,
Qu
,
X.
,
Jiao
,
J.
, and
Helander
,
M. G.
,
2014
, “
Emotion Prediction From Physiological Signals: A Comparison Study Between Visual and Auditory Elicitors
,”
Interact. Comput.
,
26
(
3
), pp.
285
302
.10.1093/iwc/iwt039
6.
Tseng
,
M. M.
, and
Jiao
,
J.
,
1998
, “
Computer-Aided Requirement Management for Product Definition: A Methodology and Implementation
,”
Concurrent Eng.: Res. Appl.
,
6
(
3
), pp.
145
160
.10.1177/1063293X9800600205
7.
Jiao
,
J.
, and
Chen
,
C.-H.
,
2006
, “
Customer Requirement Management in Product Development: A Review of Research Issues
,”
Concurrent Eng.: Res. Appl.
,
14
(
3
), pp.
173
185
.10.1177/1063293X06068357
8.
Otto
,
K.
, and
Wood
,
K.
,
2001
,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice Hall
,
Upper Saddle River
.
9.
Wagner
,
E. R.
, and
Hansen
,
E. N.
,
2004
, “
A Method for Identifying and Assessing Key Customer Group Needs
,”
Ind. Mark. Manage.
,
33
(
7
), pp.
643
655
.10.1016/j.indmarman.2003.10.003
10.
Zhou
,
F.
,
Jiao
,
R. J.
,
Schaefer
,
D.
, and
Chen
,
S.
,
2010
, “
Hybrid Association Mining and Refinement for Affective Mapping in Emotional Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
3
), p.
031010
.10.1115/1.3482063
11.
Hanski
,
J.
,
Reunanen
,
M.
,
Kunttu
,
S.
,
Karppi
,
E.
,
Lintala
,
M.
, and
Nieminen
,
H.
,
2014
, “
Customer Observation as a Source of Latent Customer Needs and Radical New Ideas for Product-Service Systems
,”
Engineering Asset Management 2011
,
J.
Lee
,
J.
Ni
,
J.
Sarangapani
, and
J.
Mathew
, eds.,
Springer
,
London
, pp.
395
407
.10.1007/978-1-4471-4993-4_35
12.
Zhou
,
F.
,
Ji
,
Y.
, and
Jiao
,
R.
,
2013
, “
Affective and Cognitive Design for Mass Personalization: Status and Prospect
,”
J. Intell. Manuf.
,
24
(
5
), pp.
1047
1069
.10.1007/s10845-012-0673-2
13.
Liu
,
B.
,
2010
, “
Sentiment Analysis and Subjectivity
,”
Handbook of Natural Language Processing
,
N.
Indurkhya
, and
F. J.
Damerau
, eds.,
Chapman and Hall/CRC
,
Boca Raton
.
14.
Jin
,
W.
,
Ho
,
H. H.
, and
Srihari
,
R. K.
,
2009
, “
OpinionMiner: A Novel Machine Learning System for Web Opinion Mining and Extraction
,”
Proceedings of the 15th
ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ACM
,
Paris
, pp.
1195
1204
.10.1145/1557019.1557148
15.
Chen
,
L.
,
Qi
,
L.
, and
Wang
,
F.
,
2012
, “
Comparison of Feature-Level Learning Methods for Mining Online Consumer Reviews
,”
Expert Syst. Appl.
,
39
(
10
), pp.
9588
9601
.10.1016/j.eswa.2012.02.158
16.
Hu
,
M.
, and
Liu
,
B.
,
2004
, “
Mining Opinion Features in Customer Reviews
,”
The 19th National Conference on Artificial Intelligence
,
San Jose
.
17.
Hannukainen
,
P.
, and
Hölttä-Otto
,
K.
,
2006
, “
Identifying Customer Needs: Disabled Persons as Lead Users
,”
ASME
Paper No. DETC2006-99043.10.1115/DETC2006-99043
18.
Chen
,
W.
,
Hoyle
,
C.
, and
Wassenaar
,
H.
,
2013
, “
A Choice Modeling Approach for Usage Context-Based Design
,”
Decision-Based Design
,
Springer
London
, pp.
255
285
.10.1007/978-1-4471-4036-8_10
19.
Zhou
,
F.
,
Jianxin
,
J.
,
Songlin
,
C.
, and
Daqing
,
Z.
,
2011
, “
A Case-Driven Ambient Intelligence System for Elderly in-Home Assistance Applications
,”
IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev.
,
41
(
2
), pp.
179
189
.10.1109/TSMCC.2010.2052456
20.
Goel
,
A.
, and
Craw
,
S.
,
2005
, “
Design, Innovation and Case-Based Reasoning
,”
Knowl. Eng. Rev.
,
20
(
3
), pp.
271
276
.10.1017/S0269888906000609
21.
Chen
,
W.
,
Hoyle
,
C.
, and
Wassenaar
,
H.
,
2013
, “
Fundamentals of Analytical Techniques for Modeling Consumer Preferences and Choices
,”
Decision-Based Design
,
Springer
,
London
, pp.
35
77
.10.1007/978-1-4471-4036-8_3
22.
Ghani
,
R.
,
Probst
,
K.
,
Liu
,
Y.
,
Krema
,
M.
, and
Fano
,
A.
,
2006
, “
Text Mining for Product Attribute Extraction
,”
SIGKDD Explor. Newsl.
,
8
(
1
), pp.
41
48
.10.1145/1147234.1147241
23.
Putthividhya
,
D.
, and
Hu
,
J.
,
2011
, “
Bootstrapped Named Entity Recognition for Product Attribute Extraction
,”
Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics
,
Edinburgh
, pp.
1557
1567
.
24.
Hu
,
M.
, and
Liu
,
B.
,
2004
, “
Mining and Summarizing Customer Reviews
,”
Proceedings of the Tenth
ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ACM
,
Seattle, WA
, pp.
168
177
.10.1145/1014052.1014073
25.
Raju
,
S.
,
Pingali
,
P.
, and
Varma
,
V.
,
2009
, “
An Unsupervised Approach to Product Attribute Extraction
,”
Proceedings of the 31st European Conference on IR Research on Advances in Information Retrieval
,
Springer-Verlag
,
Toulouse
, pp.
796
800
.10.1007/978-3-642-00958-7_88
26.
Wassenaar
,
H. J.
,
Chen
,
W.
,
Cheng
,
J.
, and
Sudjianto
,
A.
,
2005
, “
Enhancing Discrete Choice Demand Modeling for Decision-Based Design
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
514
523
.10.1115/1.1897408
27.
Wassenaar
,
H. J.
, and
Chen
,
W.
,
2003
, “
An Approach to Decision Based Design With Discrete Choice Analysis for Demand Modeling
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
490
497
.10.1115/1.1587156
28.
Tucker
,
C. S.
, and
Kim
,
H. M.
,
2011
, “
Trend Mining for Predictive Product Design
,”
ASME J. Mech. Des.
,
133
(
11
), p.
111008
.10.1115/1.4004987
29.
Archak
,
N.
,
Ghose
,
A.
, and
Ipeirotis
,
P. G.
,
2007
, “
Show Me the Money!: Deriving the Pricing Power of Product Features by Mining Consumer Reviews
,”
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
ACM
,
San Jose
, pp.
56
65
.
30.
Rai
,
R.
,
2012
, “
Identifying Key Product Attributes and Their Importance Levels From Online Customer Reviews
,”
ASME
Paper No. DETC2012-70493.10.1115/DETC2012-70493
31.
Stone
,
T.
, and
Choi
,
S. K.
,
2013
, “
Extracting Consumer Preference From User-Generated Content Sources Using Classification
,”
ASME
Paper No. DETC2013-13228.10.1115/DETC2013-13228
32.
Stone
,
T.
, and
Choi
,
S. K.
,
2013
, “
Consumer Preference Estimation From Twitter Classification: Validation and Uncertainty Analysis
,”
The 19th International Conference on Engineering Design
,
Seoul
.
33.
Miller
,
G. A.
,
1995
, “
Wordnet: A Lexical Database for English
,”
Commun. ACM
,
38
(
11
), pp.
39
41
.10.1145/219717.219748
34.
Kinnear
,
T. C.
, and
Taylor
,
J. R.
,
1995
,
Marketing Research: An Applied Approach
,
McGraw-Hill
,
New York
.
35.
Ding
,
X.
,
Liu
,
B.
, and
Yu
,
P. S.
,
2008
, “
A Holistic Lexicon-Based Approach to Opinion Mining
,”
Proceedings of the 2008 International Conference on Web Search and Data Mining
,
ACM
,
Palo Alto
, pp.
231
240
.10.1145/1341531.1341561
36.
Titov
,
I.
, and
McDonald
,
R.
,
2008
, “
A Joint Model of Text and Aspect Ratings for Sentiment Summarization
,”
The 46th Annual Meeting of Association for Computational Linguistics
:
Human Language Technologies
,
Columbus
.
37.
Blair-Goldensohn
,
S.
,
Hannan
,
K.
,
McDonald
,
R.
,
Neylon
,
T.
,
Reis
,
G. A.
, and
Reynar
,
J.
,
2008
, “
Building a Sentiment Summarizer for Local Service Reviews
,” WWW Workshop on NLP in the Information Explosion Era,
Beijing
.
38.
Zhou
,
F.
,
Fang
,
Z.
, and
Xu
,
J.
,
2007
, “
Constructing Support Vector Machine Kernels From Orthogonal Polynomials for Face and Speaker Verification
,”
Fourth International Conference on Image and Graphics
,
IEEE
,
Chengdu, China
, pp.
627
632
.10.1109/ICIG.2007.72
39.
Bickart
,
B.
, and
Schindler
,
R. M.
,
2001
, “
Internet Forums as Influential Sources of Consumer Information
,”
J. Interact. Mark.
,
15
(
3
), pp.
31
40
.10.1002/dir.1014
40.
Clemons
,
E.
,
Gao
,
G.
, and
Hitt
,
L.
,
2006
, “
When Online Reviews Meet Hyperdifferentiation: A Study of the Craft Beer Industry
,”
J. Manage. Inf. Syst.
,
23
(
2
), pp.
149
171
.10.2753/MIS0742-1222230207
41.
Ghose
,
A.
, and
Ipeirotis
,
P. G.
,
2011
, “
Estimating the Helpfulness and Economic Impact of Product Reviews: Mining Text and Reviewer Characteristics
,”
IEEE Trans. Knowl. Data Eng.
,
23
(
10
), pp.
1498
1512
.10.1109/TKDE.2010.188
42.
Miao
,
Q.
,
Li
,
Q.
, and
Dai
,
R.
,
2009
, “
AMAZING: A Sentiment Mining and Retrieval System
,”
Expert Syst. Appl.
,
36
(
3
), pp.
7192
7198
.10.1016/j.eswa.2008.09.035
43.
Lee
,
T. Y.
,
2007
, “
Needs-Based Analysis of Online Customer Reviews
,”
Proceedings of the Ninth International Conference on Electronic Commerce
,
ACM
,
Minneapolis, MN
, pp.
311
318
.10.1145/1282100.1282159
44.
Kano
,
N.
,
Seraku
,
N.
,
Takahashi
,
F.
, and
Tsuji
,
S.
,
1984
, “
Attractive Quality and Must-Be Quality
,”
J. Jpn. Soc. Qual. Control
,
14
(
2
), pp.
39
48
.
45.
Leonard
,
D.
, and
Rayport
,
J. F.
,
1997
, “
Sparking Innovation Through Empathic Design
,” Harvard Business Review, Nov.–Dec.
46.
Deszca
,
G.
,
Munro
,
H.
, and
Noori
,
H.
,
1999
, “
Developing Breakthrough Products: Challenges and Options for Market Assessment
,”
J. Oper. Manage.
,
17
(
6
), pp.
613
630
.10.1016/S0272-6963(99)00017-0
47.
Rogers
,
E. M.
,
2003
,
Diffusion of Innovations
,
Free Press
,
New York
.
48.
Bradley
,
M. M.
, and
Lang
,
P. J.
,
1999
, “
Affective Norms for English Words (ANEW): Instruction Manual and Affective Ratings
,” Technical Report No. C-1, The Center for Research in Psychophysiology, University of Florida, Gainsville.
49.
Lin
,
C.-F.
, and
Wang
,
S.-D.
,
2002
, “
Fuzzy Support Vector Machines
,”
IEEE Trans. Neural Networks
,
13
(
2
), pp.
464
471
.10.1109/72.991432
50.
Zhou
,
F.
,
Xu
,
Q.
,
Helander
,
M. G.
, and
Jiao
,
R. J.
,
2011
, “
Affect Prediction From Physiological Measures Via Visual Stimuli
,”
Int. J. Hum.-Comput. Stud.
,
69
(
12
), pp.
801
819
.10.1016/j.ijhcs.2011.07.005
51.
Carenini
,
G.
,
Ng
,
R. T.
, and
Zwart
,
E.
,
2005
, “
Extracting Knowledge From Evaluative Text
,”
Proceedings of the 3rd International Conference on Knowledge Capture
,
ACM
,
Banff, Alberta
, pp.
11
18
.10.1145/1088622.1088626
52.
Budanitsky
,
A.
, and
Hirst
,
G.
,
2001
, “
Semantic Distance in WordNet: An Experimental, Application-Oriented Evaluation of Five Measures
,”
Workshop on WordNet and Other Lexical Resources, Second Meeting of the North American Chapter of the Association for Computational Linguistics
,
Pittsburgh
, pp.
29
34
.
53.
Liu
,
Y.
,
Jin
,
J.
,
Ji
,
P.
,
Harding
,
J. A.
, and
Fung
,
R. Y. K.
,
2013
, “
Identifying Helpful Online Reviews: A Product Designer's Perspective
,”
Comput.-Aided Des.
,
45
(
2
), pp.
180
194
.10.1016/j.cad.2012.07.008
54.
Bradley
,
M. M.
, and
Lang
,
P. J.
,
1994
, “
Measuring Emotion: The Self-Assessment Manikin and the Semantic Differential
,”
J. Behav. Ther., Exp. Psychiatry
,
25
(
1
), pp.
49
59
.10.1016/0005-7916(94)90063-9
You do not currently have access to this content.