Design optimization of composite structures is a challenging task due to the large dimensionality of the design space. In addition to the geometric variables (e.g., thickness of each component), the composite layup (the fiber orientation of each layer) also needs to be considered as design variables in optimization. However, the existing optimization methods are inefficient when applied to the multicomponent, multilayer composite structures. The low efficiency is caused by the high dimensionality of the design space and the inherent shortcomings in the existing design representation methods. In this work, two existing composite layup representation methods are investigated to discuss the root cause of the low efficiency. Furthermore, a new structural equation modeling (SEM)-based strategy is proposed to reduce the dimensionality of the design space. This strategy also helps the designers identify the loading mode of each component of the structural system. This strategy is tested in two scenarios of engineering optimization: (1) the direct multidisciplinary design optimization (DMDO), and (2) the metamodeling-based optimization. The proposed methods are compared with the traditional methods on two engineering design problems. It is observed that the design representation methods have a strong impact on the optimization results. The two case studies also demonstrate the effectiveness of the proposed strategy. Furthermore, recommendations are made on the selection of optimization methods for the design of composite structures.

References

1.
Ionita
,
A.
, and
Weitsman
,
Y.
,
2006
, “
On the Mechanical Response of Randomly Reinforced Chopped-Fibers Composites: Data and Model
,”
Compos. Sci. Technol.
,
66
(
14
), pp.
2566
2579
.
2.
Feraboli, P., Attilio, M., Luigi, T., and Andrea, P., 2007, “
Integrated ]Development of CFRP Structures for a Topless High Performance Vehicle
,”
Compos. Struct.
,
78
(4), pp. 495–506.
3.
Pan, Y., Lucian, I., and Assimina A. P., 2008, “
Numerical Generation of a Random Chopped Fiber Composite RVE and its Elastic Properties
,”
Compos. Sci. Technol.
,
68
(13), pp. 2792–2798.
4.
Messager
,
T.
,
Pyrz
,
M.
,
Gineste
,
B.
, and
Chauchot
,
P.
,
2002
, “
Optimal Laminations of Thin Underwater Composite Cylindrical Vessels
,”
Compos. Struct.
,
58
(
4
), pp.
529
537
.
5.
Guo
,
S.
,
2007
, “
Aeroelastic Optimization of an Aerobatic Aircraft Wing Structure
,”
Aerosp. Sci. Technol.
,
11
(
5
), pp.
396
404
.
6.
Le Riche
,
R.
, and
Haftka
,
R. T.
,
1993
, “
Optimization of Laminate Stacking Sequence for Buckling Load Maximization by Genetic Algorithm
,”
AIAA J.
,
31
(
5
), pp.
951
956
.
7.
Erdal
,
O.
, and
Sonmez
,
F. O.
,
2005
, “
Optimum Design of Composite Laminates for Maximum Buckling Load Capacity Using Simulated Annealing
,”
Compos. Struct.
,
71
(
1
), pp.
45
52
.
8.
Miki, M., and Yoshihiko, S., 1993, “
Optimum Design of Laminated Composite Plates Using Lamination Parameters
,”
AIAA J.
,
31
(5), pp. 921–922.
9.
Giger
,
M.
,
Keller
,
D.
, and
Ermanni
,
P.
,
2008
, “
A Graph-Based Parameterization Concept for Global Laminate Optimization
,”
Struct. Multidiscip. Optim.
,
36
(
3
), pp.
289
305
.
10.
Grosset
,
L.
,
LeRiche
,
R.
, and
Haftka
,
R. T.
,
2006
, “
A Double-Distribution Statistical Algorithm for Composite Laminate Optimization
,”
Struct. Multidiscip. Optim.
,
31
(
1
), pp.
49
59
.
11.
Vo-Duy
,
T.
,
Duong-Gia
,
D.
,
Ho-Huu
,
V.
,
Vu-Do
,
H.
, and
Nguyen-Thoi
,
T.
,
2017
, “
Multi-Objective Optimization of Laminated Composite Beam Structures Using NSGA-II Algorithm
,”
Compos. Struct.
,
168
, pp.
498
509
.
12.
Liu
,
B.
,
Haftka
,
R. T.
, and
Akgün
,
M. A.
,
2000
, “
Two-Level Composite Wing Structural Optimization Using Response Surfaces
,”
Struct. Multidiscip. Optim.
,
20
(
2
), pp.
87
96
.
13.
Acar
,
P.
,
Vijayachandran
,
A. A.
,
Sundararaghavan
,
V.
, and
Waas
,
A. M.
,
2016
, “
Fiber Path Optimization of Symmetric Laminates With Cutouts for Thermal Buckling
,”
J. Aircr.
,
54
(
1
), pp.
54
61
.
14.
Pelletier
,
J. L.
, and
Vel
,
S. S.
,
2006
, “
Multi-Objective Optimization of Fiber Reinforced Composite Laminates for Strength, Stiffness and Minimal Mass
,”
Comput. Struct.
,
84
(
29–30
), pp.
2065
2080
.
15.
Jing
,
Z.
,
Fan
,
X.
, and
Sun
,
Q.
,
2015
, “
Stacking Sequence Optimization of Composite Laminates for Maximum Buckling Load Using Permutation Search Algorithm
,”
Compos. Struct.
,
121
, pp.
225
236
.
16.
Akbulut
,
M.
, and
Sonmez
,
F. O.
,
2008
, “
Optimum Design of Composite Laminates for Minimum Thickness
,”
Comput. Struct.
,
86
(
21–22
), pp.
1974
1982
.
17.
Irisarri
,
F.-X.
,
Lasseigne
,
A.
,
Leroy
,
F.-H.
, and
Le Riche
,
R.
,
2014
, “
Optimal Design of Laminated Composite Structures With Ply Drops Using Stacking Sequence Tables
,”
Compos. Struct.
,
107
, pp.
559
569
.
18.
Keller
,
D.
,
2011
, “
Global Laminate Optimization on Geometrically Partitioned Shell Structures
,”
Struct. Multidiscip. Optim.
,
43
(
3
), pp.
353
368
.
19.
Almeida
,
F.
, and
Awruch
,
A.
,
2009
, “
Design Optimization of Composite Laminated Structures Using Genetic Algorithms and Finite Element Analysis
,”
Compos. Struct.
,
88
(
3
), pp.
443
454
.
20.
Zehnder
,
N.
, and
Ermanni
,
P.
,
2006
, “
A Methodology for the Global Optimization of Laminated Composite Structures
,”
Compos. Struct.
,
72
(
3
), pp.
311
320
.
21.
Xu
,
H.
,
Majcher
,
M. T.
,
Chuang
,
C.-H.
,
Fu
,
Y.
, and
Yang
,
R.-J.
,
2014
, “
Comparative Benchmark Studies of Response Surface Model-Based Optimization and Direct Multidisciplinary Design Optimization
,”
SAE Technical Paper No. 2014-01-0400
.
22.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
23.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
1
13
.
24.
Lee
,
Y.-J.
, and
Lin
,
C.-C.
,
2003
, “
Regression of the Response Surface of Laminated Composite Structures
,”
Compos. Struct.
,
62
(
1
), pp.
91
105
.
25.
Lin
,
C.-C.
, and
Lee
,
Y.-J.
,
2004
, “
Stacking Sequence Optimization of Laminated Composite Structures Using Genetic Algorithm With Local Improvement
,”
Compos. Struct.
,
63
(
3–4
), pp.
339
345
.
26.
Manan
,
A.
,
Vio
,
G.
,
Harmin
,
M.
, and
Cooper
,
J.
,
2010
, “
Optimization of Aeroelastic Composite Structures Using Evolutionary Algorithms
,”
Eng. Optim.
,
42
(
2
), pp.
171
184
.
27.
Irisarri
,
F.-X.
,
Laurin
,
F.
,
Leroy
,
F.-H.
, and
Maire
,
J.-F.
,
2011
, “
Computational Strategy for Multiobjective Optimization of Composite Stiffened Panels
,”
Compos. Struct.
,
93
(
3
), pp.
1158
1167
.
28.
Blom
,
A. W.
,
Stickler
,
P. B.
, and
Gürdal
,
Z.
,
2010
, “
Optimization of a Composite Cylinder Under Bending by Tailoring Stiffness Properties in Circumferential Direction
,”
Compos. Part B: Eng.
,
41
(
2
), pp.
157
165
.
29.
Lanzi
,
L.
, and
Giavotto
,
V.
,
2006
, “
Post-Buckling Optimization of Composite Stiffened Panels: Computations and Experiments
,”
Compos. Struct.
,
73
(
2
), pp.
208
220
.
30.
Xu
,
H.
,
Yang
,
J.
,
Chuang
,
C.-H.
, and
Zhan
,
Z.
,
2017
, “
Study of the Design Representation Methods for the Optimization of Multi-Layer Composite Structures
,”
ASME
Paper No. DETC2017-67309
.
31.
Pugesek
,
B. H.
,
Tomer
,
A.
, and
Von Eye
,
A.
,
2003
,
Structural Equation Modeling: Applications in Ecological and Evolutionary Biology
,
Cambridge University Press
, New York.
32.
Goldberger
,
A. S.
,
1972
, “
Structural Equation Methods in the Social Sciences
,”
Econometrica: J. Econometric Soc.
,
40
(
6
), pp.
979
1001
.
33.
McQuitty
,
S.
,
2004
, “
Statistical Power and Structural Equation Models in Business Research
,”
J. Bus. Res.
,
57
(
2
), pp.
175
183
.
34.
Schreiber
,
J. B.
,
Nora
,
A.
,
Stage
,
F. K.
,
Barlow
,
E. A.
, and
King
,
J.
,
2006
, “
Reporting Structural Equation Modeling and Confirmatory Factor Analysis Results: A Review
,”
J. Educ. Res.
,
99
(
6
), pp.
323
338
.
35.
Chin
,
W. W.
,
1998
, “
The Partial Least Squares Approach to Structural Equation Modeling
,”
Modern Methods for Business Research
, Lawrence Erlbaum Associates, Publisher, Mahwah, NJ.
You do not currently have access to this content.