One of the challenges in designing metamaterials for additive manufacturing (AM) is accounting for the differences between as-designed and as-built geometries and material properties. From a designer's perspective, these differences can lead to degradation of part and metamaterial performance, which is especially difficult to accommodate in small-lot or one-of-a-kind production. In this context, each part is unique, and therefore, extensive iteration is costly. Designers need a means of exploring the design space while simultaneously considering the reliability of additively manufacturing particular candidate designs. In this work, a design exploration approach, based on Bayesian network classifiers (BNC), is extended to incorporate manufacturing variation into the design exploration process and identify designs that reliably meet performance requirements when this variation is taken into account. The example application is the design of negative stiffness (NS) metamaterials, in which small volume fractions of NS inclusions are embedded within a host material. The resulting metamaterial or composite exhibits macroscopic mechanical stiffness and loss properties that exceed those of the base matrix material. The inclusions are fabricated with microstereolithography with features on the scale of tens of microns, but variability is observed in material properties and dimensions from specimen to specimen. This variability is measured and modeled via design, fabrication, and characterization of metrology parts. The quantified manufacturing variability is incorporated into the BNC approach as a manufacturability classifier to identify candidate designs that achieve performance targets reliably, even when manufacturing variability is taken into account.

References

1.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer
,
Boston, MA
.
2.
Salzbrenner
,
B. C.
,
Rodelas
,
J. M.
,
Madison
,
J. D.
,
Jared
,
B. H.
,
Swiler
,
L. P.
,
Shen
,
Y. L.
, and
Boyce
,
B. L.
,
2017
, “
High-Throughput Stochastic Tensile Performance of Additively Manufactured Stainless Steel
,”
J. Mater. Process. Technol.
,
241
, pp.
1
12
.
3.
Bourell
,
D. L.
,
Watt
,
T. J.
,
Leigh
,
D. K.
, and
Fulcher
,
B.
,
2014
, “
Performance Limitation in Polymer Laser Sintering
,”
Phys. Procedia
,
56
, pp.
147
156
.
4.
Allison
,
J.
,
Sharpe
,
C.
, and
Seepersad
,
C. C.
,
2017
, “
A Test Part for Evaluating the Accuracy and Resolution of a Polymer Powder Bed Fusion Process
,”
ASME J. Mech. Des.
,
139
(
10
), p. 100902.
5.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of In-Situ Process Monitoring and In-Situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
, pp.
431
445
.
6.
Castillo
,
L.
,
2005
,
Study About the Rapid Manufacturing of Complex Parts of Stainless Steel and Titanium
,
TNO Industrial Technology
,
Eindhoven, The Netherlands
.
7.
Mahesh
,
M.
,
Wong
,
Y.
,
Fuh
,
J. Y. H.
, and
Loh
,
H. T.
,
2004
, “
Benchmarking for Comparative Evaluation of RP Systems and Processes
,”
Rapid Prototyp. J.
,
10
(
2
), pp.
123
135
.
8.
Govett
,
T.
,
Kim
,
K.
,
Pinero
,
D.
, and
Lundin
,
M.
,
2012
,
Design Rules for Selective Laser Sintering
,
The University of Texas
,
Austin, TX
.
9.
Moylan
,
S.
,
Slotwinski
,
J.
,
Cooke
,
A.
,
Jurrens
,
K.
, and
Donmez
,
M. A.
,
2014
, “
An Additive Manufacturing Test Artifact
,”
J. Res. Natl. Inst. Stand. Technol.
,
119
, pp.
429
459
.
10.
Sigmund
,
O.
,
2009
, “
Manufacturing Tolerant Topology Optimization
,”
Acta Mech. Sin.
,
25
(
2
), pp.
227
239
.
11.
Chen
,
S.
,
Chen
,
W.
, and
Lee
,
S.
,
2010
, “
Level Set Based Robust Shape and Topology Optimization Under Random Field Uncertainties
,”
Struct. Multidiscip. Optim.
,
41
(
4
), pp.
507
524
.
12.
Schevenels
,
M.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Robust Topology Optimization Accounting for Spatially Varying Manufacturing Errors
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
49–52
), pp.
3613
3627
.
13.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends Opportunities, Considerations, and Constraints
,”
CIRP Annals
,
65
(
2
), pp.
737
760
.
14.
Yang
,
S.
, and
Zhao
,
Y. F.
,
2015
, “
Additive Manufacturing-Enabled Design Theory and Methodology: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1–4
), pp.
327
342
.
15.
McDowell
,
D. L.
,
Panchal
,
J.
,
Choi
,
H. J.
,
Seepersad
,
C.
,
Allen
,
J.
, and
Mistree
,
F.
,
2009
,
Integrated Design of Multiscale, Multifunctional Materials and Products
,
Butterworth-Heinemann
,
Burlington, MA
.
16.
Olson
,
G. B.
,
1997
, “
Computational Design of Hierarchically Structured Materials
,”
Science
,
277
(
5330
), pp.
1237
1242
.
17.
Matthews
,
J.
,
Klatt
,
T.
,
Morris
,
C.
,
Seepersad
,
C. C.
,
Haberman
,
M. R.
, and
Shahan
,
D. W.
,
2016
, “
Hierarchical Design of Negative Stiffness Metamaterials Using a Bayesian Network Classifier
,”
ASME J. Mech. Des.
,
138
(
4
), p. 041404.
18.
Klatt
,
T.
, and
Haberman
,
M. R.
,
2013
, “
A Nonlinear Negative Stiffness Metamaterial Unit Cell and Small-On-Large Multiscale Material Model
,”
J. Appl. Phys.
,
114
(
3
), pp.
1
12
.
19.
Cortes
,
S.
,
Allison
,
J.
,
Morris
,
C.
,
Haberman
,
M. R.
,
Seepersad
,
C. C.
, and
Kovar
,
D.
,
2017
, “
Design, Manufacture, and Quai-Static Testing of Metallic Negative Stiffness Structures Within a Polymer Matrix
,”
Exp. Mech.
,
57
(
8
), pp.
1183
1191
.
20.
Shahan
,
D. W.
, and
Seepersad
,
C. C.
,
2012
, “
Bayesian Network Classifiers for Set-Based Collaborative Design
,”
ASME J. Mech. Des.
,
134
(
7
), p. 071001.
21.
Ward
,
A.
,
Liker
,
J. K.
,
Cristiano
,
J. J.
, and
Sobek
,
D. K.
,
1995
, “
The Second Toyota Paradox
,”
Sloan Manage. Rev.
,
36
(
3
), pp.
43
61
.https://sloanreview.mit.edu/article/the-second-toyota-paradox-how-delaying-decisions-can-make-better-cars-faster/
22.
Sobek
,
D. K.
,
Ward
,
A. C.
, and
Liker
,
J. K.
,
1999
, “
Toyota's Principles of Set-Based Concurrent Engineering
,”
Sloan Manage. Rev.
,
40
(2), pp.
67
84
.https://sloanreview.mit.edu/article/toyotas-principles-of-setbased-concurrent-engineering/
23.
Chang
,
T. S.
,
Ward
,
A. C.
,
Lee
,
J.
, and
Jacox
,
E. H.
,
1994
, “
Conceptual Robustness in Simultaneous Engineering: An Extension of Taguchi's Parameter Design
,”
Res. Eng. Des.
,
6
(
4
), pp.
211
222
.
24.
Chen
,
W.
,
1999
, “
A Robust Design Approach for Achieving Flexibility in Multidisciplinary Design
,”
AIAA J.
,
37
(
8
), pp.
982
989
.
25.
Kalsi
,
M.
,
Hacker
,
K.
, and
Lewis
,
K.
,
1999
, “
A Comprehensive Robust Design Approach for Decision Trade-Offs in Complex System Design
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
1
10
.
26.
Hu
,
Q.
,
Yu
,
D.
,
Liu
,
J.
, and
Wu
,
C.
,
2008
, “
Neighborhood Rough Set Based Heterogeneous Feature Subset Selection
,”
Inf. Sci.
,
178
(
18
), pp.
3577
3594
.
27.
Panchal
,
J. H.
,
Fernández
,
M. G.
,
Christiaan
,
J. J.
,
Paredis
,
J. K.
, and
Mistree
,
F.
,
2007
, “
An Interval-Based Constraint Satisfaction (IBCS) Method for Decentralized Collaborative Multifunctional Design
,”
Concurrent Eng.
,
15
(
3
), pp.
309
323
.
28.
Hartl
,
D. J.
,
Galvan
,
E.
,
Malak
,
R. J.
, and
Baur
,
J. W.
,
2016
, “
Parameterized Design Optimization of a Magnetohydrodynamic Liquid Metal Active Cooling Concept
,”
ASME J. Mech. Des.
,
138
(
3
), p.
031402
.
29.
Zeliff
,
K.
,
Bennette
,
W.
, and
Ferguson
,
S.
,
2017
, “
Benchmarking the Performance of a Machine Learning Classifier Enabled Multiobjective Genetic Algorithm on Six Standard Test Functions
,” ASME Paper No.
DETC2017-68332
.
30.
Chen
,
W.
, and
Fuge
,
M.
,
2017
, “
Beyond the Known: Detecting Novel Feasible Domains Over an Unbounded Design Space
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111405
.
31.
Rosen
,
D. W.
,
2015
, “
A Set-Based Design Method for Material-Geometry Structures by Design Space Mapping
,” ASME Paper No.
DETC2015-46760
.
32.
Matthews
,
J.
,
Klatt
,
T.
,
Seepersad
,
C. C.
,
Haberman
,
M. R.
, and
Shahan
,
D. W.
,
2013
, “
Hierarchical Design of Composite Materials With Negative Stiffness Inclusions Using a Bayesian Network Classifier
,”
ASME
Paper No. DETC2013-13128.
33.
Scott
,
D. W.
,
1992
,
Multivariate Density Estimates
,
Wiley
,
New York
.
34.
Perez
,
A.
,
Larranaga
,
P.
, and
Inza
,
I.
,
2009
, “
Bayesian Classifiers Based on Kernel Density Estimation: Flexible Classifiers
,”
Int. J. Approximate Reasoning
,
50
(
2
), pp.
341
362
.
35.
Friedman
,
N.
,
Geiger
,
D.
, and
Goldzsmidt
,
M.
,
1997
, “
Bayesian Network Classifiers
,”
Mach. Learn.
,
29
(
2/3
), pp.
131
163
.
36.
Hoffmann
,
R.
, and
Tresp
,
V.
,
1995
, “
Discovering Structure in Continuous Variable Using Bayesian Networks
,”
Advances in Neural Information Processing Systems
, MIT Press, Cambridge, MA.
37.
John
,
G.
, and
Langley
,
P.
,
1995
, “
Estimating Continuous Distributions in Bayesian Classifiers
,”
11th Conference on Uncertainty in Artificial Intelligence
, Montreal, QC, Canada Aug. 18–20.http://web.cs.iastate.edu/~honavar/bayes-continuous.pdf
38.
Bosman
,
P.
, and
Thierens
,
D.
,
2000
, “
IDEAs Based on the Normal Kernels Probability Density Function
,” Utrecht University, Utrecht, The Netherlands.
39.
Soong
,
T. T.
,
2004
,
Fundamentals of Probability and Statistics for Engineers
,
Wiley
,
Hoboken, NJ
.
40.
Haberman
,
M. R.
,
Berthelot
,
Y. H.
, and
Cherkaoui
,
M.
,
2006
, “
Micromechanical Modeling of Particulate Composite for Damping of Acoustic Waves
,”
ASME J. Eng. Mater. Technol.
,
128
(
3
), pp.
320
329
.
41.
Koutsawa
,
Y.
,
Haberman
,
M. R.
, and
Cherkaoui
,
M.
,
2009
, “
Multiscale Design of a Rectangular Sandwich Plate With Viscoelastic Materials
,”
Int. J. Mech. Mater. Des.
,
5
(
1
), pp.
29
44
.
42.
Wojnar
,
C. S.
, and
Kochmann
,
D. M.
,
2013
, “
A Negative-Stiffness Phase in Elastic Composites Can Produce Stable Extreme Effective Dynamic but Not Static Stiffness
,”
Philos. Mag.
,
94
(
6
), pp.
532
555
.
43.
Huh
,
D. S.
, and
Cooper
,
S. L.
,
1971
, ¸“
Dynamic Mechanical Properties of Polyurethane Block Polymers
,”
Polym. Eng. Sci.
,
77
(
5
), pp.
369
376
.
44.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microeletromechanical Syst.
,
13
(
2
), pp.
137
146
.
45.
Lakes
,
R. S.
,
2001
, “
Extreme Damping in Composite Materials With a Negative Stiffness Phase
,”
Phys. Rev. Lett.
,
86
(
13
), pp.
2897
2900
.
46.
Morris
,
C.
,
Cormack
,
J. M.
,
Hamilton
,
M. F.
,
Haberman
,
M. R.
, and
Seepersad
,
C. C.
, 2017, “
Ultrasonic Characterization of the Complex Young's Modulus of Polymer Parts Produced With Microstereolithography
,”
Rapid Prototyping J.
, (in press).
47.
Young
,
W. C.
,
Budynas
,
R. G.
, and
Sadegh
,
A. M.
,
2011
,
Roark's Formulas for Stress and Strain
,
McGraw-Hill
,
New York
.
48.
Massey
,
F. J.
,
1951
, “
The Kolmogorov-Smirnov Test for Goodness of Fit
,”
J. Am. Stat. Assoc.
,
46
(
253
), pp.
68
78
.
49.
Mani
,
M.
,
Feng
,
S.
,
Lane
,
B.
,
Donmez
,
A.
,
Moylan
,
S.
, and
Fesperman
,
R.
,
2015
, “
Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes
,” US Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD.
You do not currently have access to this content.