Abstract

With the rapid developments of advanced manufacturing and its ability to manufacture microscale features, architected materials are receiving ever increasing attention in many physics fields. Such a design problem can be treated in topology optimization as architected material with repeated unit cells using the homogenization theory with the periodic boundary condition. When multiple architected materials with spatial variations in a structure are considered, a challenge arises in topological solutions, which may not be connected between adjacent material architecture. This paper introduces a new measure, connectivity index (CI), to quantify the topological connectivity, and adds it as a constraint in multiscale topology optimization to achieve connected architected materials. Numerical investigations reveal that the additional constraints lead to microstructural topologies, which are well connected and do not substantially compromise their optimalities.

References

1.
Corni
,
I.
,
Harvey
,
T. J.
,
Wharton
,
J. A.
,
Stokes
,
K. R.
,
Walsh
,
F. C.
, and
Wood
,
R. J. K.
,
2012
, “
A Review of Experimental Techniques to Produce a Nacre-Like Structure
,”
Bioinspiration Biomimetics
,
7
(
3
), p.
031001
.
2.
Tan
,
T.
,
Rahbar
,
N.
,
Allameh
,
S. M.
,
Kwofie
,
S.
,
Dissmore
,
D.
,
Ghavami
,
K.
, and
Soboyejo
,
W. O.
,
2011
, “
Mechanical Properties of Functionally Graded Hierarchical Bamboo Structures
,”
Acta Biomater.
,
7
(
10
), pp.
3796
3803
.
3.
Wickham
,
S.
,
Large
,
M. C.
,
Poladian
,
L.
, and
Jermiin
,
L. S.
,
2006
, “
Exaggeration and Suppression of Iridescence: The Evolution of Two-Dimensional Butterfly Structural Colours
,”
J. R. Soc. Interface
,
3
(
6
), pp.
99
109
.
4.
Shalaev
,
V. M.
,
2007
, “
Optical Negative-Index Metamaterials
,”
Nat. Photonics
,
1
(
1
), pp.
41
48
.
5.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
,
Biener
,
M. M.
,
Ge
,
Q.
, and
Jackson
,
J. A.
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
.
6.
Andreassen
,
E.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2014
, “
Design of Manufacturable 3D Extremal Elastic Microstructure
,”
Mech. Mater.
,
69
(
1
), pp.
1
10
.
7.
Takezawa
,
A.
,
Kobashi
,
M.
, and
Kitamura
,
M.
,
2015
, “
Porous Composite With Negative Thermal Expansion Obtained by Photopolymer Additive Manufacturing
,”
APL Mater
,
3
(
7
), p.
076103
.
8.
Berger
,
J. B.
,
Wadley
,
H. N. G.
, and
McMeeking
,
R. M.
,
2017
, “
Mechanical Metamaterials at the Theoretical Limit of Isotropic Elastic Stiffness
,”
Nature
,
543
(
7646
), pp.
533
537
.
9.
Sigmund
,
O.
,
1994
, “
Materials With Prescribed Constitutive Parameters: An Inverse Homogenization Problem
,”
Int. J. Solids Struct.
,
31
(
17
), pp.
2313
2329
.
10.
Sigmund
,
O.
, and
Torquato
,
S.
,
1997
, “
Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method
,”
J. Mech. Phys. Solids
,
45
(
6
), pp.
1037
1067
.
11.
Rodrigues
,
H.
,
Guedes
,
J. M.
, and
Bendsøe
,
M. P.
,
2002
, “
Hierarchical Optimization of Material and Structure
,”
Struct. Multidiscip. Optim.
,
24
(
1
), pp.
1
10
.
12.
Coelho
,
P. G.
,
Fernandes
,
P. R.
,
Guedes
,
J. M.
, and
Rodrigues
,
H. C.
,
2008
, “
A Hierarchical Model for Concurrent Material and Topology Optimisation of Three-Dimensional Structures
,”
Struct. Multidiscip. Optim.
,
35
(
2
), pp.
107
115
.
13.
Liu
,
L.
,
Yan
,
J.
, and
Cheng
,
G.
,
2008
, “
Optimum Structure With Homogeneous Optimum Truss-Like Material
,”
Comput. Struct.
,
86
(
13–14
), pp.
1417
1425
.
14.
Niu
,
B.
,
Yan
,
J.
, and
Cheng
,
G.
,
2009
, “
Optimum Structure With Homogeneous Optimum Cellular Material for Maximum Fundamental Frequency
,”
Struct. Multidiscip. Optim.
,
39
(
2
), pp.
115
132
.
15.
Yan
,
J.
,
Guo
,
X.
, and
Cheng
,
G.
,
2016
, “
Multi-Scale Concurrent Material and Structural Design Under Mechanical and Thermal Loads
,”
Comput. Mech.
,
57
(
3
), pp.
437
446
.
16.
Sivapuram
,
R.
,
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2016
, “
Simultaneous Material and Structural Optimization by Multiscale Topology Optimization
,”
Struct. Multidiscip. Optim.
,
54
(
5
), pp.
1267
1281
.
17.
Guedes
,
J.
, and
Kikuchi
,
N.
,
1990
, “
Preprocessing and Postprocessing for Materials Based on the Homogenization Method With Adaptive Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
83
(
2
), pp.
143
198
.
18.
Alexandersen
,
J.
, and
Lazarov
,
B. S.
,
2015
, “
Topology Optimisation of Manufacturable Microstructural Details Without Length Scale Separation Using a Spectral Coarse Basis Preconditioner
,”
Comput. Methods Appl. Mech. Eng.
,
290
, pp.
156
182
.
19.
Xie
,
Y. M.
,
Zuo
,
Z. H.
,
Huang
,
X.
, and
Rong
,
J. H.
,
2012
, “
Convergence of Topological Patterns of Optimal Periodic Structures Under Multiple Scales
,”
Struct. Multidiscip. Optim.
,
46
(
1
), pp.
41
50
.
20.
Coelho
,
P. G.
,
Amiano
,
L. D.
,
Guedes
,
J. M.
, and
Rodrigues
,
H. C.
,
2016
, “
Scale-Size Effects Analysis of Optimal Periodic Material Microstructures Designed by the Inverse Homogenization Method
,”
Comput. Struct.
,
174
, pp.
21
32
.
21.
Dumontet
,
H.
,
1985
, “
Boundary Layers Stresses in Elastic Composites
,”
Studies in Applied Mechanics
, Vol.
12
,
Elsevier
, Amsterdam, The Netherlands, pp.
215
232
.
22.
Liu
,
C.
,
Zhang
,
W.
,
Du
,
Z.
, and
Guo
,
X.
, “
Multidomain Topology Optimization of Manufacturable Microstructures Using Homogenization Method
,” submitted.
23.
Zhou
,
S.
, and
Li
,
Q.
,
2008
, “
Design of Graded Two-Phase Microstructures for Tailored Elasticity Gradients
,”
J. Mater. Sci.
,
43
(
15
), pp.
5157
5167
.
24.
Radman
,
A.
,
Huang
,
X.
, and
Xie
,
Y. M.
,
2013
, “
Topology Optimization of Functionally Graded Cellular Materials
,”
J. Mater. Sci.
,
48
(
4
), pp.
1503
1510
.
25.
Deng
,
J.
, and
Chen
,
W.
,
2017
, “
Concurrent Topology Optimization of Multiscale Structures With Multiple Porous Materials Under Random Field Loading Uncertainty
,”
Struct. Multidiscip. Optim.
,
56
(
1
), pp.
1
19
.
26.
Wang
,
Y.
,
Chen
,
F.
, and
Wang
,
M. Y.
,
2017
, “
Concurrent Design With Connectable Graded Microstructures
,”
Comput. Methods Appl. Mech. Eng.
,
317
, pp.
84
101
.
27.
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2015
, “
Introducing the Sequential Linear Programming Level-Set Method for Topology Optimization
,”
Struct. Multidiscip. Optim.
,
51
(
3
), pp.
631
643
.
28.
Johnson
,
S. G.
,
2014
, “
The NLopt Nonlinear-Optimization Package
,” epub, accessed Aug. 27, 2018, http://ab-initio.mit.edu/nlopt
29.
Xia
,
L.
, and
Breitkopf
,
P.
,
2014
, “
Concurrent Topology Optimization Design of Material and Structure Within Nonlinear Multiscale Analysis Framework
,”
Comput. Methods Appl. Mech. Eng.
,
278
, pp.
524
542
.
30.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
,
Topology Optimization: Theory, Methods and Applications
,
Springer
,
Berlin
.
31.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
32.
Querin
,
O. M.
,
Steven
,
G. P.
, and
Xie
,
Y. M.
,
1998
, “
Evolutionary Structural Optimisation (ESO) Using a Bidirectional Algorithm
,”
Eng. Comput.
,
15
(
8
), pp.
1031
1048
.
33.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
34.
Guo
,
X.
,
Zhang
,
W.
,
Zhang
,
J.
, and
Yuan
,
J.
,
2016
, “
Explicit Structural Topology Optimization Based on Moving Morphable Components (MMC) With Curved Skeletons
,”
Comput. Methods Appl. Mech. Eng.
,
310
, pp.
711
748
.
35.
Zhang
,
W.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1243
1260
.
36.
Zhang
,
W.
,
Yang
,
W.
,
Zhou
,
J.
,
Li
,
D.
, and
Guo
,
X.
,
2017
, “
Structural Topology Optimization Through Explicit Boundary Evolution
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011011
.
You do not currently have access to this content.