Manufacturing systems need to be designed to cope with products’ variety and frequent changes in market requirements. Switching between product families in different production periods often requires reconfiguration of the manufacturing system with associated additional cost and interruption of production. A mixed integer linear programing (MILP) model is proposed to synthesize manufacturing systems based on the co-platforming methodology taking into consideration machine level changes including addition or removal of machine axes and changing setup as well as system level changes such as addition or removal of machines. The objective is to minimize the cost of change needed for transition between product families and production periods. An illustrative numerical example and an industrial case study from tier I automotive supplier are used for verification. Finally, the effect of maintaining a common core of machines in the manufacturing system on the total capital and change cost is investigated. It has been demonstrated that synthesizing manufacturing systems designed using the co-platforming strategy reduces the total investment cost including initial cost of machines and cost of reconfiguration.

References

1.
Simpson
,
T. W.
,
Jiao
,
J. R.
,
Siddique
,
Z.
, and
Hölttä-Otto
,
K.
,
2014
,
Advances in Product Family and Product Platform Design
,
Springer
,
New York
.
2.
ElMaraghy
,
H.
, and
Abbas
,
M.
,
2015
, “
Products-Manufacturing Systems Co-Platforming
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
407
410
.
3.
Abbas
,
M.
, and
ElMaraghy
,
H.
,
2016
, “
Functional Synthesis of Manufacturing Systems Using Co-Platforming
,”
Procedia CIRP
,
52
, pp.
102
107
.
4.
ASME
,
2004
, “
Mathematical Definition of Dimensioning and Tolerancing Principles
,”
American Society of Mechanical Engineers
,
New York
, Standard No.
Y14.5.1M-1994
.https://www.asme.org/products/codes-standards/y1451m-1994-mathematical-definition-dimensioning
5.
Shah
,
J. J.
, and
Rogers
,
M. T.
,
1988
, “
Functional Requirements and Conceptual Design of the Feature-Based Modelling System
,”
Comput. Aided Eng. J.
,
5
(
1
), pp.
9
15
.
6.
ElMaraghy
,
H.
,
1991
,
Intelligent Product Design and Manufacture, Artificial Intelligence in Design
,
Springer
, Berlin, pp.
147
168
.
7.
Bernardi
,
A.
,
Legleitner
,
R.
, and
Klauck
,
C.
,
1993
, “
PIM—Skeletal Plan-Based CAPP
,”
Comput. Ind.
,
23
(
1
), pp.
87
97
.
8.
Han
,
J.
,
1996
, “
Survey of Feature Research
,” University of Southern California, Los Angeles, CA, Technical Report No.
IRIS-96-346
.http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.73.8267
9.
Abbas
,
M.
, and
ElMaraghy
,
H.
,
2016
, “
Design Synthesis of Machining Systems Using Co‐Platforming
,”
J. Manuf. Syst.
,
41
, pp.
299
313
.
10.
ElMaraghy
,
H.
, and
Kashkoush
,
M.
,
2015
, “
Assembly System Synthesis Using Association Rule Discovery
,”
Int. J. Adv. Manuf. Technol.
,
81
(
9–12
), pp.
1705
1722
.
11.
Hanafy
,
M.
, and
ElMaraghy
,
H.
,
2017
, “
Modular Product Platform Configuration and Co-Planning of Assembly Lines Using Assembly and Disassembly
,”
J. Manuf. Syst.
,
42
, pp.
289
305
.
12.
Bryan
,
A.
,
Wang
,
H.
, and
Abell
,
J.
,
2013
, “
Concurrent Design of Product Families and Reconfigurable Assembly Systems
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051001
.
13.
Bryan
,
A.
,
Hu
,
S. J.
, and
Koren
,
Y.
,
2013
, “
Assembly System Reconfiguration Planning
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041005
.
14.
Saxena
,
L. K.
, and
Jain
,
P. K.
,
2012
, “
A Model and Optimisation Approach for Reconfigurable Manufacturing System Configuration Design
,”
Int. J. Prod. Res.
,
50
(
12
), pp.
3359
3381
.
15.
AlGeddawy
,
T.
, and
ElMaraghy
,
H.
,
2011
, “
Manufacturing Systems Synthesis Using Knowledge Discovery
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
437
440
.
16.
AlGeddawy
,
T.
, and
ElMaraghy
,
H.
,
2010
, “
Design of Single Assembly Line for the Delayed Differentiation of Product Variants
,”
Flexible Serv. Manuf. J.
,
22
(
3–4
), pp.
163
182
.
17.
Ko
,
J.
, and
Hu
,
S. J.
,
2009
, “
Manufacturing System Design Considering Stochastic Product Evolution and Task Recurrence
,”
ASME J. Manuf. Sci. Eng.
,
131
(
5
), p.
051012
.
18.
Youssef
,
A. M. A.
, and
ElMaraghy
,
H. A.
,
2006
, “
Modelling and Optimization of Multiple-Aspect RMS Configurations
,”
Int. J. Prod. Res.
,
44
(
22
), pp.
4929
4958
.
19.
Michalek
,
J. J.
,
Ceryan
,
O.
,
Papalambros
,
P. Y.
, and
Koren
,
Y.
,
2005
, “Manufacturing Investment and Allocation in Product Line Design Decision-Making,”
ASME
Paper No. DETC2005-84812.
20.
Li
,
S.
,
Wang
,
H.
,
Hu
,
S. J.
,
Lin
,
Y.-T.
, and
Abell
,
J. A.
,
2011
, “
Automatic Generation of Assembly System Configuration With Equipment Selection for Automotive Battery Manufacturing
,”
J. Manuf. Syst.
,
30
(
4
), pp.
188
195
.
21.
Wang
,
H.
,
Zhu
,
X.
,
Wang
,
H.
,
Hu
,
S. J.
,
Lin
,
Z.
, and
Chen
,
G.
,
2011
, “
Multi-Objective Optimization of Product Variety and Manufacturing Complexity in Mixed-Model Assembly Systems
,”
J. Manuf. Syst.
,
30
(
1
), pp.
16
27
.
22.
Shabaka
,
A. I.
, and
ElMaraghy
,
H. A.
,
2007
, “
Generation of Machine Configurations Based on Product Features
,”
Int. J. Comput. Integr. Manuf.
,
20
(
4
), pp.
355
369
.
23.
Chen
,
L.
,
Xi
,
F. J.
, and
Macwan
,
A.
,
2005
, “
Optimal Module Selection for Preliminary Design of Reconfigurable Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
127
(
1
), pp.
104
115
.
24.
Mesa
,
J.
,
Maury
,
H.
,
Turizo
,
J.
, and
Bula
,
A.
,
2014
, “
A Methodology to Define a Reconfigurable System Architecture for a Compact Heat Exchanger Assembly Machine
,”
Int. J. Adv. Manuf. Technol.
,
70
(
9–12
), pp.
2199
2210
.
25.
FICO
,
2009
,
MIP Formulations and Linearization: A Quick Reference
,
Fair Issac Corporation
,
San Jose, CA
, pp.
1
19
.
26.
Kalpakjian
,
S.
, Schmid, S., and Vijay Sekar, K. S.,
2014
,
Manufacturing Engineering and Technology
, 7th ed.,
Pearson Publications
,
Singapore
.
27.
Noritaka
,
F.
,
Tanaka
,
Y.
, and
Sugano
,
T.
,
2006
,
Ultra-Flexible Manufacturing Line with a Finishing Machining Center for Cylinder Blocks
, Vol.
43
,
Mitsubishi Heavy Industries, Ltd.
,
Tokyo, Japan
.
28.
Gropp
,
W.
, and
More
,
J. J.
,
1997
, “
Optimization Environments and the NEOS Server
,” Argonne National Laboratory, Lemont, IL, Report No.
ANL/MCS-P654-0397
.https://www.osti.gov/scitech/servlets/purl/563264
29.
Czyzyk
,
J.
,
Mesnier
,
M. P.
, and
More
,
J. J.
,
1998
, “
The NEOS Server
,”
IEEE J. Comput. Sci. Eng.
,
5
(
3
), pp.
68
75
.
30.
Dolan
,
E.
,
2001
, “The NEOS Server 4.0 Administrative Guide,” Argonne National Laboratory, Lemont, IL, Technical Memorandum No.
ANL/MCS-TM-250
.http://www.mcs.anl.gov/papers/TM-250.pdf
You do not currently have access to this content.