This paper addresses the assembly strategy capable of deriving a family of overconstrained mechanisms systematically. The modular approach is proposed. It treats the topological synthesis of overconstrained mechanisms as a systematical derivation rather than a random search. The result indicates that a family of overconstrained mechanisms can be constructed by combining legitimate modules. A spatial four-bar linkage containing two revolute joints (R) and two prismatic joints (P) is selected as the source-module for the purpose of demonstration. All mechanisms discovered in this paper were modeled and animated with computer-aided design (CAD) software and their mobility were validated with input–output equations as well as computer simulations. The assembly strategy can serve as a self-contained library of overconstrained mechanisms.

References

1.
Grubler
,
M.
,
1917
,
Getriebelehre: Eine Theorie Des Zwanglaufes Und Der Ebenen Mechanismen
,
Springer
,
Berlin
.
2.
Kutzbach
,
K.
,
1929
, “
Mechanische Leitungsverzweigung, Ihre Gesetze Und Anwendungen
,”
Maschinenbau-Betr.
,
8
(21), pp.
710
716
.
3.
Sarrus
,
P. T.
,
1853
, “
Note Sur La Transformation Des Mouvements Rectilignes Alternatifs, Enmouvements Circulaires, Et Reciproquement
,”
Acad. Des. Sci.
,
36
, pp.
1036
1038
.
4.
Bennett
,
G. T.
,
1903
, “A New Mechanism,”
Engineering
,
76
, pp.
777
778
.
5.
Bennett
,
G. T.
,
1905
, “
The Parallel Motion of Sarrus and Some Allied Mechanisms
,”
Philos. Mag.
,
9
, pp.
803
810
.
6.
Delassus
,
E.
,
1922
, “
Les Chaînes Articulées Fermées Et Déformables à Quatre Membres
,”
Bull. Sci. Math.
,
46
, pp.
283
304
.
7.
Bricard
,
R.
,
1927
,
Leçons De Cinématique
, Vol.
2
,
Gauthier-Villars
, Villars, Paris, pp.
7
12
.
8.
Myard
,
F. E.
,
1931
, “
Contribution à La Géométrie Des Systèmes Articulés
,”
Bull. Soc. Math. France
,
59
, pp.
183
210
.
9.
Myard
,
F. E.
,
1931
, “
Sur Les Chaines Fermees a Quatre Couples Rotoides Nonconcourants, Deformables Au Permier Degre De Liberte. Isogramme Torique
,”
Comptes Rendus Hebdomadaires Des Stances De I'Acadimie De Science
, Vol.
192
, Paris, pp.
1194
1196
.
10.
Goldberg
,
M.
,
1943
, “
New Five-Bar and Six-Bar Linkages in Three Dimensions
,”
Trans. ASME
,
65
(1), pp.
649
656
.
11.
Franke
,
R.
,
1951
,
Vom Aufbau Der Getriebe
,
Deutscher Ingenieur
,
Düsseldorf, Germany
, pp.
97
106
.
12.
Altmann
,
P. G.
,
Grodzinski
,
P.
, and
M'Ewen
,
E.
,
1954
, “
Link Mechanisms in Modern Kinematics
,”
Proc. Inst. Mech. Eng.
,
168
(
37
), pp.
889
896
.
13.
Harrisberger
,
L.
, and
Soni
,
A. H.
,
1966
, “A Survey of Three Dimensional Mechanisms With One General Constraint,” ASME Paper No. 66-MECH-44.
14.
Dimentberg
,
F. M.
, and
Yoslovich
,
I. V.
,
1966
, “
A Spatial Four-Link Mechanism Having Two Prismatic Pairs
,”
J. Mech.
,
1
(
3–4
), pp.
291
300
.
15.
Waldron
,
K. J.
,
1969
, “The Mobility of Linkages,” Doctoral dissertation, Stanford University, Stanford, CA.
16.
Pamidi
,
P. R.
,
Soni
,
A. H.
, and
Dukkipati
,
R. V.
,
1973
, “
Necessary and Sufficient Existence Criteria of Over-Constrained Five-Link Spatial Mechanisms With Helical, Cylinder, Revolute, and Prism Pairs
,”
J. Eng. Ind.
,
95
(
3
), pp.
737
743
.
17.
Waldron
,
K. J.
,
1968
, “
Hybrid Over-Constrained Linkages
,”
J. Mech.
,
3
(
2
), pp.
73
78
.
18.
Wohlhart
,
K.
,
1987
, “
A New 6R Space Mechanism
,”
Seventh World Congress on the Theory of Machines and Mechanisms
, Sevilla, Spain, Sept. 17–22, pp.
193
198
.
19.
Wohlhart
,
K.
,
1991
, “
Merging Two General Goldberg 5R Linkages to Obtain a New 6R Space Mechanism
,”
Mech. Mach. Theory
,
26
(
2
), pp.
659
668
.
20.
Lee
,
C. C.
, and
Yan
,
H. S.
,
1990
, “
Movable Spatial 6R Mechanisms With Three Adjacent Concurrent Axes
,”
Trans. Can. Soc. Mech. Eng.
,
14
(
3
), pp.
85
90
.
21.
Lee
,
C. C.
, and
Yan
,
H. S.
,
1993
, “
Movable Spatial 6R Mechanisms With Three Adjacent Parallel Axes
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
522
529
.
22.
Mavroidis
,
C.
, and
Roth
,
B.
,
1995
, “
New and Revised Over-Constrained Mechanisms
,”
Trans. ASME
,
117
(
1
), pp.
75
82
.
23.
Mavroidis
,
C.
, and
Roth
,
B.
,
1995
, “
Analysis of Over-Constrained Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
69
74
.
24.
Dietmeier
,
P.
,
1995
, “
A New 6R Space Mechanism
,”
Ninth World Congress on the Theory of Machines and Mechanisms
, Milano, Italy, Aug. 29–Sept. 2, pp.
52
56
.
25.
Schatz
,
P.
,
1998
,
Rhythmusforschung Und Technik
,
Verlag Freies Geistesleben
,
Stuttgart, Germany
.
26.
Alizade
,
R. I.
, Selvi, O., and Gezgin, E.,
2010
, “
Structural Design of Parallel Manipulators With General Constraint One
,”
Mech. Mach. Theory
,
45
(1), pp. 1–14.
27.
Li
,
Z.
, and
Schicho
,
J.
,
2013
, “
Classification of Angle-Symmetric 6R Linkages
,”
Mech. Mach. Theory
,
70
, pp.
372
379
.
28.
Baker
,
J. E.
,
1978
, “
Over-Constrained Five-Bars With Parallel Adjacent Joint Axes—I: Method of Analysis
,”
Mech. Mach. Theory
,
13
(
2
), pp.
213
218
.
29.
Baker
,
J. E.
,
1978
, “
Over-Constrained Five-Bars With Parallel Adjacent Joint Axes—II the Linkages
,”
Mech. Mach. Theory
,
13
(
2
), pp.
219
233
.
30.
Baker
,
J. E.
,
1978
, “
An Over-Constrained Five-Bar With a Plane of Quasi-Symmetry
,”
Mech. Mach. Theory
,
13
(
4
), pp.
467
473
.
31.
Baker
,
J. E.
,
1981
, “
The S-H-H-H- Linkage
,”
Mech. Mach. Theory
,
16
(
6
), pp.
599
609
.
32.
Baker
,
J. E.
,
1982
, “
On Completing the Determination of Existence Criteria for Over-Constrained 4-Bars With Helical Joints
,”
Mech. Mach. Theory
,
17
(
2
), pp.
133
142
.
33.
Baker
,
J. E.
,
1989
, “
Over-Constrained Five-Bars With Prismatic Joints and Parallel Adjacent Joint Axes
,”
Mech. Mach. Theory
,
24
(
4
), pp.
267
273
.
34.
Baker
,
J. E.
,
1996
, “
On 5-Revolute Linkages With Intersecting Adjacent Joint Axes
,”
Mech. Mach. Theory
,
31
(
8
), pp.
1167
1183
.
35.
Baker
,
J. E.
,
1996
, “
Overconstrained Six-Bars With Parallel Adjacent Joint-Axes
,”
Mech. Mach. Theory
,
38
(
11
), pp.
1323
1323
.
36.
Baker
,
J. E.
,
2004
, “
Curious New Family of Overconstrained Six-Bars
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
602
606
.
37.
Mueller
,
A.
,
2007
, “Generic Mobility of Rigid Body Mechanisms: On the Existence of Overconstrained Mechanisms,”
ASME
Paper No. DETC2007-34621.
38.
Pfurner
,
M.
,
2008
, “
A New Family of Overconstrained 6R-Mechanisms
,”
Second European Conference on Mechanism Science
, Cassino, Italy, Sept. 17–20, pp.
117
124
.
39.
Fang
,
Y. F.
, and
Tsai
,
L. W.
,
2004
, “
Enumeration of a Class of Over-Constrained Mechanisms Using the Theory of Reciprocal Screws
,”
Mech. Mach. Theory
,
39
(
11
), pp.
1175
1187
.
40.
Liu
,
J.
,
Li
,
Y.
, and
Huang
,
Z.
,
2011
, “
Mobility Analysis of Altmann Over-Constrained Linkages by Modified Grubler-Kutzbach Criterion
,”
Chin. J. Mech. Eng.
,
24
(
4
), pp.
638
646
.
41.
Hegedüs
,
G.
,
Schicho
,
J.
, and
Schröcker
,
H. P.
,
2013
, “The Theory of Bonds: A New Method for the Analysis of Linkages,”
Mech. Mach. Theory
, 70, pp.
407
424
.
42.
Li
,
Z.
,
Schicho
,
J.
, and
Schröcker
,
H. P.
,
2016
, “
A Survey on the Theory of Bonds
,”
IMA J. Math. Control Inf.
, epub.
43.
Gallet
,
M.
,
Koutschan
,
C.
,
Li
,
Z.
,
Regensburger
,
G.
,
Schicho
,
J.
, and
Villamizar
,
N.
,
2017
, “Planar Linkages Following a Prescribed Motion,”
Math. Comput.
, 86(303), pp.
473
506
.
44.
Baker
,
J. E.
,
1979
, “
The Bennett, Goldberg and Myard Linkages—In Perspective
,”
Mech. Mach. Theory
,
14
(
4
), pp.
239
253
.
45.
Baker
,
J. E.
,
1980
, “
An Analysis of the Bricard Linkages
,”
Mech. Mach. Theory
,
15
(
4
), pp.
267
286
.
46.
Yu
,
H. C.
, and
Baker
,
J. E.
,
1981
, “
On the Generation of New Linkages From Bennett Loops
,”
Mech. Mach. Theory
,
16
(
5
), pp.
473
485
.
47.
Baker
,
J. E.
,
1993
, “
A Comparative Survey of the Bennett-Based, 6-Revolute Kinematic Loops
,”
Mech. Mach. Theory
,
28
(
1
), pp.
83
96
.
48.
Baker
,
J. E.
,
1993
, “
A Geometrico-Algebraic Exploration of Altmann's Linkage
,”
Mech. Mach. Theory
,
28
(
2
), pp.
249
260
.
49.
Baker
,
J. E.
,
1995
, “
On Bricard's Doubly Collapsible Octahedron and Its Planar, Spherical and Skew Counterparts
,”
J. Franklin Inst.
,
332
(
6
), pp.
657
679
.
50.
Lee
,
C. C.
,
1996
, “
On the Simple Stationary Configurations of Single-Loop Spatial N-Revolute Over-Constrained Linkages
,”
Trans.-Can. Soc. Mech. Eng.
,
20
(
1
), pp.
17
39
.
51.
Chen
,
Y.
, and
Baker
,
J. E.
,
2005
, “
Using a Bennett Linkage as a Connector Between Other Bennett Loops
,”
Proc. Inst. Mech. Eng., J. Multi-Body Dyn.
,
219
(
2
), pp.
177
185
.
52.
Chen
,
Y.
,
You
,
Z.
, and
Tarnai
,
T.
,
2005
, “
Threefold-Symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids Struct.
,
42
(
8
), pp.
2287
2301
.
53.
Chen
,
Y.
, and
You
,
Z.
,
2007
, “
Spatial 6R Linkages Based on the Combination of Two Goldberg 5R Linkages
,”
Mech. Mach. Theory
,
42
(
11
), pp.
1484
1498
.
54.
Chen
,
Y.
, and
You
,
Z.
,
2008
, “
On Mobile Assemblies of Bennett Linkages
,”
Proc. R. Soc. A
,
464
(
2093
), pp.
1275
1293
.
55.
Chen
,
Y.
, and
You
,
Z.
,
2009
, “
An Extended Myard Linkage and Its Derived 6R Linkage
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052301
.
56.
Liu
,
S. Y.
, and
Chen
,
Y.
,
2009
, “
Myard Linkage and Its Mobile Assemblies
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1950
1963
.
57.
Chai
,
W. H.
, and
Chen
,
Y.
,
2010
, “
The Line-Symmetric Octahedral Bricard Linkage and Its Structural Closure
,”
Mech. Mach. Theory
,
45
(
5
), pp.
772
779
.
58.
Chen
,
Y.
, and
Chai
,
W. H.
,
2011
, “
Bifurcation of a Special Line and Plane Symmetric Bricard Linkage
,”
Mech. Mach. Theory
,
46
(
4
), pp.
515
533
.
59.
Song
,
C. Y.
, and
Chen
,
Y.
,
2011
, “
A Family of Mixed Double-Goldberg 6R Linkages
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
468
(
2139
), pp.
871
890
.
60.
Song
,
C. Y.
, and
Chen
,
Y.
,
2011
, “
A Spatial 6R Linkage Derived From Subtractive Goldberg 5R Linkages
,”
Mech. Mach. Theory
,
46
(
8
), pp.
1097
1106
.
61.
Song
,
C. Y.
, and
Chen
,
Y.
,
2012
, “
Multiple Linkage Forms and Bifurcation Behaviours of the Double-Subtractive-Goldberg 6R Linkage
,”
Mech. Mach. Theory
,
57
, pp.
95
110
.
62.
Song
,
C. Y.
,
Chen
,
Y.
, and
Chen
,
I. M.
,
2013
, “
A 6R Linkage Reconfigurable Between the Line-Symmetric Bricard Linkage and the Bennett Linkage
,”
Mech. Mach Theory
,
70
, pp.
278
292
.
63.
Song
,
C. Y.
,
Feng
,
H. J.
,
Chen
,
Y.
,
Chen
,
I.-M.
, and
Kanga
,
R.
,
2015
, “
Reconfigurable Mechanism Generated From the Framework of Bennett Linkages
,”
Mech. Mach. Theory
,
88
, pp.
49
62
.
64.
Baker
,
J. E.
,
1978
, “
On Coaxial Screws in Spatial Linkages
,”
Mech. Mach. Theory
,
13
(
3
), pp.
345
349
.
65.
Lee
,
C. C.
,
1995
, “
Kinematic Analysis and Dimensional Synthesis of Bennett 4R Mechanism
,”
JSME Int. J., Ser. C
,
38
(
1
), pp.
199
207
.
66.
Lee
,
C. C.
,
1995
, “
On the Synthesis of Movable Spatial 6R Linkages From Movable 4R Chains
,”
J. Appl. Mech. Rob.
,
2
(
2
), pp.
42
49
.
67.
Lee
,
C. C.
,
1996
, “
Kinematic Analysis and Dimensional Synthesis of General-Type Sarrus Mechanism
,”
JSME Int. J., Ser. C
,
39
(
4
), pp.
790
799
.
68.
Huang
,
C.
, and
Sun
,
C. C.
,
2000
, “
An Investigation of Screw Systems in the Finite Displacements of Bennett-Based 6R Linkages
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
426
430
.
69.
Pfurner
,
M.
,
Kong
,
X.
, and
Huang
,
C.
,
2014
, “
Complete Kinematic Analysis of Single-Loop Multiple-Mode 7-Link Mechanisms Based on Bennett and Overconstrained RPRP Mechanisms
,”
Mech. Mach. Theory
,
73
, pp.
117
129
.
70.
Kong
,
X.
,
2015
, “
Kinematic Analysis of a 6R Single-Loop Overconstrained Spatial Mechanism for Circular Translation
,”
Mech. Mach. Theory
,
93
, pp.
163
174
.
71.
Zhang
,
K.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
.
72.
Shen
,
H.
,
Huang
,
H.
, and
Ji
,
T.
,
2015
, “
Normalized-Constrained Approach for Joint Clearance Design of Deployable Overconstrained Myard 5R Mechanism
,”
J. Adv. Mech. Des., Syst., Manuf.
,
9
(
5
), p.
JAMDSM0064
.
73.
Huang
,
C.
, and
Tu
,
H.-T.
,
2005
, “
Linear Property of the Screw Surface of the Spatial RPRP Mechanism
,”
ASME J. Mech. Des.
,
128
(
3
), pp.
581
586
.
74.
Lu
,
Y.
,
2004
, “
Using CAD Functionalities for the Kinematics Analysis of Spatial Parallel Manipulators With 3-, 4-, 5-, 6-Linearly Driven Limbs
,”
Mech. Mach. Theory
,
39
(
1
), pp.
41
60
.
75.
Kinzel
,
E. C.
,
Schmiedeler
,
J. P.
, and
Pennock
,
G. R.
,
2005
, “
Kinematic Synthesis for Finitely Separated Positions Using Geometric Constraint Programming
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1070
1079
.
You do not currently have access to this content.