Abstract

In order to develop novel solutions for complex systems and in increasingly competitive markets, it may be advantageous to generate large numbers of design concepts and then to identify the most novel and valuable ideas. However, it can be difficult to process, review, and assess thousands of design concepts. Based on this need, we develop and demonstrate an automated method for design concept assessment. In the method, machine learning technologies are first applied to extract ontological data from design concepts. Then, a filtering strategy and quantitative metrics are introduced that enable creativity rating based on the ontological data. This method is tested empirically. Design concepts are crowd-generated for a variety of actual industry design problems/opportunities. Over 4000 design concepts were generated by humans for assessment. Empirical evaluation assesses: (1) correspondence of the automated ratings with human creativity ratings; (2) whether concepts selected using the method are highly scored by another set of crowd raters; and finally (3) if high scoring designs have a positive correlation or relationship to industrial technology development. The method provides a possible avenue to rate design concepts deterministically. A highlight is that a subset of designs selected automatically out of a large set of candidates was scored higher than a subset selected by humans when evaluated by a set of third-party raters. The results hint at bias in human design concept selection and encourage further study in this topic.

References

1.
Kudrowitz
,
B. M.
, and
Wallace
,
D.
,
2013
, “
Assessing the Quality of Ideas From Prolific, Early-Stage Product Ideation
,”
J. Eng. Des.
,
24
(
2
), pp.
120
139
. 10.1080/09544828.2012.676633
2.
Linsey
,
J. S.
,
Clauss
,
E. F.
,
Kurtoglu
,
T.
,
Murphy
,
J. T.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2011
, “
An Experimental Study of Group Idea Generation Techniques: Understanding the Roles of Idea Representation and Viewing Methods
,”
ASME J. Mech. Des.
,
133
(
3
), p.
31008
. 10.1115/1.4003498
3.
Lim
,
S. Y. C.
,
Camburn
,
B. A.
,
Moreno
,
D.
,
Huang
,
Z.
, and
Wood
,
K.
,
2016
, “
Design Concept Structures in Massive Group Ideation
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
,
Charlotte, NC
,
Aug. 21–24
, p.
V007T06A006
.
4.
Zhang
,
C.
,
Kwon
,
Y. P.
,
Kramer
,
J.
,
Kim
,
E.
, and
Agogino
,
A. M.
,
2017
, “
Deep Learning for Design in Concept Clustering
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
,
American Society of Mechanical Engineers
, p.
V001T02A019
.
5.
Song
,
B.
, and
Luo
,
J.
,
2017
, “
Mining Patent Precedents for Data-Driven Design: The Case of Spherical Rolling Robots
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111420
. 10.1115/1.4037613
6.
Luo
,
J.
,
Song
,
B.
,
Blessing
,
L.
, and
Wood
,
K.
,
2018
, “
Design Opportunity Conception Using the Total Technology Space Map
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
32
(
4
), pp.
449
461
. 10.1017/s0890060418000094
7.
Shah
,
J. J.
,
Smith
,
S. M.
, and
Vargas-Hernandez
,
N.
,
2003
, “
Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
24
(
2
), pp.
111
134
. 10.1016/S0142-694X(02)00034-0
8.
Fuge
,
M.
,
Stroud
,
J.
, and
Agogino
,
A.
,
2013
, “
Automatically Inferring Metrics for Design Creativity
,”
ASME Paper No. DETC2013-12620
.
9.
He
,
Y.
, and
Luo
,
J.
,
2017
, “
The Novelty ‘Sweet Spot’of Invention
,”
Des. Sci.
,
3
, pp.
1
22
.
10.
He
,
Y.
,
Camburn
,
B.
,
Luo
,
J.
,
Yang
,
M. C.
, and
Wood
,
K. L.
,
2019
, “
Visual Sensemaking of Massive Crowdsourced Data for Design Ideation
,”
International Conference Engineering Design
,
Delft, The Netherlands
,
Aug. 5–8
, pp.
409
418
.
11.
Wortmann
,
T.
, and
Tunçer
,
B.
,
2017
, “
Differentiating Parametric Design: Digital Workflows in Contemporary Architecture and Construction
,”
Des. Stud.
,
52
, pp.
173
197
. 10.1016/j.destud.2017.05.004
12.
Wortmann
,
T.
,
Costa
,
A.
,
Nannicini
,
G.
, and
Schroepfer
,
T.
,
2015
, “
Advantages of Surrogate Models for Architectural Design Optimization
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
29
(
4
), pp.
471
481
. 10.1017/s0890060415000451
13.
Puentes
,
L.
,
McComb
,
C.
, and
Cagan
,
J.
,
2018
, “
A Two Tiered Grammatical Approach for Agent-Based Computational Design
,”
Proceedings of the ASME 2018 IDETC 2018
,
ASME
,
Quebec City, Canada
,
Quebec City, Quebec, Canada
,
Aug. 26–29
, pp.
1
11
.
14.
Campbell
,
M. I.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
1999
, “
A-Design: An Agent-Based Approach to Conceptual Design in a Dynamic Environment
,”
Res. Eng. Des.
,
11
(
3
), pp.
172
192
. 10.1007/s001630050013
15.
Campbell
,
M. I.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2000
, “
Agent-Based Synthesis of Electromechanical Design Configurations
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
61
69
. 10.1115/1.533546
16.
Hauser
,
J.
, and
Katz
,
G.
,
1998
, “
Metrics: You Are What You Measure!
,”
Eur. Manage. J.
,
16
(
5
), pp.
517
528
. 10.1016/S0263-2373(98)00029-2
17.
Camburn
,
B. A.
,
Auernhammer
,
J. M.
,
Sng
,
K. H. E.
,
Mignone
,
P. J.
,
Arlitt
,
R. M.
,
Perez
,
K. B.
,
Huang
,
Z.
,
Basnet
,
S.
,
Blessing
,
L. T.
, and
Wood
,
K. L.
,
2017
, “
Design Innovation: A Study of Integrated Practice
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
,
American Society of Mechanical Engineers
, p.
V007T06A031
.
18.
Shah
,
J. J.
,
Kulkarni
,
S. V.
, and
Vargas-Hernandez
,
N.
,
2000
, “
Evaluation of Idea Generation Methods for Conceptual Design: Effectiveness Metrics and Design of Experiments
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
377
384
. 10.1115/1.1315592
19.
Collado-Ruiz
,
D.
, and
Ostad-Ahmad-Ghorabi
,
H.
,
2010
, “
Influence of Environmental Information on Creativity
,”
Des. Stud.
,
31
(
5
), pp.
479
498
. 10.1016/j.destud.2010.06.005
20.
Oman
,
S. K.
,
Tumer
,
I. Y.
,
Wood
,
K.
, and
Seepersad
,
C.
,
2013
, “
A Comparison of Creativity and Innovation Metrics and Sample Validation Through In-Class Design Projects
,”
Res. Eng. Des.
,
24
(
1
), pp.
65
92
. 10.1007/s00163-012-0138-9
21.
Paolacci
,
G.
,
Chandler
,
J.
, and
Ipeirotis
,
P. G.
,
2010
, “
Running Experiments on Amazon Mechanical Turk
,”
Judgm. Decis. Mak.
,
5
(
5
), pp.
411
419
.
22.
Kittur
,
A.
,
Chi
,
E. H.
, and
Suh
,
B.
,
2008
, “
Crowdsourcing User Studies With Mechanical Turk
,”
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
,
Florence, Italy
,
Apr. 8–10
,
ACM
, pp.
453
456
.
23.
Crayston
,
T.
, “
TextRazor: Technology
2019
, [Online], https://www.textrazor.com/technology, Accessed February 19, 2019.
24.
Derczynski
,
L.
,
Maynard
,
D.
,
Rizzo
,
G.
,
Van Erp
,
M.
,
Gorrell
,
G.
,
Troncy
,
R.
,
Petrak
,
J.
, and
Bontcheva
,
K.
,
2015
, “
Analysis of Named Entity Recognition and Linking for Tweets
,”
Inf. Process. Manage.
,
51
(
2
), pp.
32
49
. 10.1016/j.ipm.2014.10.006
25.
IPTC
,
2019
, “
List of IPTC NewsCodes and Other Vocabularies
” [Online], http://cv.iptc.org/newscodes/.
26.
Troncy
,
R.
,
2008
, “
Bringing the IPTC News Architecture Into the Semantic Web
,”
International Semantic Web Conference
,
Karlsruhe, Germany
,
Oct. 26–30
,
Springer
, pp.
483
498
.
27.
Becher
,
O.
,
Hollink
,
L.
, and
Elliott
,
D.
,
2017
, “
Exploring Concept Representations for Concept Drift Detection
,”
SEMANTICS Workshops
,
Amsterdam
,
Sept. 11–14
.
28.
Jean-Louis
,
L.
,
Zouaq
,
A.
,
Gagnon
,
M.
, and
Ensan
,
F.
,
2014
, “
An Assessment of Online Semantic Annotators for the Keyword Extraction Task
,”
Pacific Rim International Conference on Artificial Intelligence
,
Gold Coast, Australia
,
Dec. 1–5
,
Springer
, pp.
548
560
.
29.
Hollink
,
L.
,
Bedjeti
,
A.
,
van Harmelen
,
M.
, and
Elliott
,
D.
,
2016
, “
A Corpus of Images and Text in Online News
,”
Portorož, Slovenia
,
May
23–28
,
LREC
.
30.
Linsey
,
J. S.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2008
, “
Modality and Representation in Analogy
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
22
(
2
), pp.
85
100
. 10.1017/S0890060408000061
31.
Fu
,
K.
,
Chan
,
J.
,
Cagan
,
J.
,
Kotovsky
,
K.
,
Schunn
,
C.
, and
Wood
,
K.
,
2013
, “
The Meaning of ‘Near’ and ‘Far’: The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output
,”
ASME J. Mech. Des.
,
135
(
2
), p.
21007
. 10.1115/1.4023158
32.
Gael
,
A. K.
,
1997
, “
Design, Analogy, and Creativity
,”
IEEE Expert
,
12
(
3
), pp.
62
70
. 10.1109/64.590078
33.
Pellissier Tanon
,
T.
,
Vrandečić
,
D.
,
Schaffert
,
S.
,
Steiner
,
T.
, and
Pintscher
,
L.
,
2016
, “
From Freebase to Wikidata: The Great Migration
,”
Proceedings of the 25th International Conference on World Wide Web, International World Wide Web Conferences Steering Committee
, pp.
1419
1428
.
34.
Google
, “
Data Dumps: Freebase Triples
” [Online], https://developers.google.com/freebase/#freebase-rdf-dumps, Accessed April 28, 2018.
35.
Goldberg
,
Y.
, and
Levy
,
O.
,
2014
, “
Word2vec Explained: Deriving Mikolov et al.’s Negative-Sampling Word-Embedding Method
,” preprint .
36.
Goy
,
A.
,
Magro
,
D.
,
Petrone
,
G.
,
Picardi
,
C.
,
Rovera
,
M.
, and
Segnan
,
M.
,
2017
, “
An Integrated Support to Collaborative Semantic Annotation
,”
Adv. Human-Comput. Interact.
,
2017
, pp.
1
12
. 10.1155/2017/7219098
37.
Eloranta
,
V.-P.
,
Koskinen
,
J.
,
Leppnen
,
M.
, and
Reijonen
,
V.
,
2014
,
Designing Distributed Control Systems: A Pattern Language Approach
,
Wiley Publishing
,
New York
.
38.
Summers
,
J. D.
, and
Patel
,
A.
,
2018
, “
Supporting Design Decisions Using Data Driven Prediction Systems
,”
Design Science Research (DSR) 2018: Workshop on Data Driven Design and Learning
,
Montreal, Canada
,
Aug. 23–25
.
39.
De Nies
,
T.
,
Beecks
,
C.
,
Godin
,
F.
,
De Neve
,
W.
,
Stepien
,
G.
,
Arndt
,
D.
,
De Vocht
,
L.
,
Verborgh
,
R.
,
Seidl
,
T.
, and
Mannens
,
E.
,
2016
, “
A Distance-Based Approach for Semantic Dissimilarity in Knowledge Graphs
,”
2016 IEEE Tenth International Conference on Semantic Computing (ICSC)
,
Laguna Hills, CA
,
Feb. 3–5
,
IEEE
, pp.
254
257
.
40.
Bollacker
,
K.
,
Evans
,
C.
,
Paritosh
,
P.
,
Sturge
,
T.
, and
Taylor
,
J.
,
2008
, “
Freebase: A Collaboratively Created Graph Database for Structuring Human Knowledge
,”
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data
,
Washington, DC
,
Dec. 15–19
,
ACM
, pp.
1247
1250
.
41.
Atilola
,
O.
,
Tomko
,
M.
, and
Linsey
,
J. S.
,
2016
, “
The Effects of Representation on Idea Generation and Design Fixation: A Study Comparing Sketches and Function Trees
,”
Des. Stud.
,
42
, pp.
110
136
. 10.1016/j.destud.2015.10.005
42.
Tiong
,
E.
,
Seow
,
O.
,
Camburn
,
B.
,
Teo
,
K.
,
Silva
,
A.
,
Wood
,
K. L.
,
Jensen
,
D. D.
, and
Yang
,
M. C.
,
2019
, “
The Economies and Dimensionality of Design Prototyping: Value, Time, Cost, and Fidelity
,”
ASME J. Mech. Des.
,
141
(
3
), p.
31105
. 10.1115/1.4042337
43.
Saaty
,
T. L.
, and
Ozdemir
,
M. S.
,
2003
, “
Why the Magic Number Seven Plus or Minus Two
,”
Math. Comput. Model.
,
38
(
3–4
), pp.
233
244
. 10.1016/S0895-7177(03)90083-5
44.
Mark
,
G.
,
Gonzalez
,
V. M.
, and
Harris
,
J.
,
2005
, “
No Task Left Behind?: Examining the Nature of Fragmented Work
,”
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
,
Portland, OR
,
Apr. 2–7
,
ACM
, pp.
321
330
.
45.
De Vries
,
H.
,
Stevens
,
J. M. G.
, and
Vervaecke
,
H.
,
2006
, “
Measuring and Testing the Steepness of Dominance Hierarchies
,”
Anim. Behav.
,
71
(
3
), pp.
585
592
. 10.1016/j.anbehav.2005.05.015
46.
Newman
,
M. E. J.
,
2005
, “
Power Laws, Pareto Distributions and Zipf’s Law
,”
Contemp. Phys.
,
46
(
5
), pp.
323
351
. 10.1080/00107510500052444
47.
Davis
,
R. T.
,
2011
, “
MIT Launches Social Network for Ridesharing
,”
MIT News
[Online], http://news.mit.edu/2011/mit-launches-zimride, Accessed February 25, 2019.
48.
Tan
,
C.
, “
On-Demand Public Bus Services From Dec 17 as Part of 6-Month Trial
,”
2019
,
Straights Times
[Online], https://www.straitstimes.com/singapore/transport/on-demand-public-bus-services-from-dec-17-as-part-of-6-month-trial, Accessed February 19, 2019.
49.
Buzan
,
T.
,
2005
,
Mind Map: The Ultimate Thinking Tool
,
Thorsons
,
London
.
50.
Davies
,
M.
,
2011
, “
Concept Mapping, Mind Mapping and Argument Mapping: What Are the Differences and Do They Matter?
,”
High. Educ.
,
62
(
3
), pp.
279
301
. 10.1007/s10734-010-9387-6
51.
Meza
,
D.
,
2017
, “
How NASA Finds Critical Data Through a Knowledge Graph
” [Online], https://neo4j.com/blog/nasa-critical-data-knowledge-graph/, Accessed February 19, 2019.
52.
Ehrlinger
,
L.
, and
Wöß
,
W.
,
2016
, “
Towards a Definition of Knowledge Graphs
,”
Semant (Posters, Demos, SuCCESS), 48
.
53.
Pellissier Tanon
,
T.
,
Vrandečić
,
D.
,
Schaffert
,
S.
,
Steiner
,
T.
,
Pintscher
,
L.
,
Bollacker
,
K.
,
Evans
,
C.
,
Paritosh
,
P.
,
Sturge
,
T.
, and
Taylor
,
J.
,
2008
, “
Freebase: A Collaboratively Created Graph Database for Structuring Human Knowledge
,”
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data
,
Vancouver, Canada
,
June 9–12
,
ACM
, pp.
1419
1428
.
54.
Zurada
,
J. M.
,
1992
,
Introduction to Artificial Neural Systems
,
West Publishing Company
,
St. Paul, MN
.
55.
Lafferty
,
J.
,
McCallum
,
A.
, and
Pereira
,
F. C. N.
,
2001
, “
Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data
,”
Departmental papers (CIS), University of Pennsylvania
.
56.
Perez-Ortiz
,
J. A.
, and
Forcada
,
M. L.
,
2001
, “
Part-of-Speech Tagging With Recurrent Neural Networks
,”
Proceedings of the International Joint Conference on Neural Networks (IJCNN’01) (Cat. No. 01CH37222)
,
Washington, DC
,
July 15–19
,
IEEE
, pp.
1588
1592
.
You do not currently have access to this content.