Abstract

Studies on the topology optimization of linkage mechanisms have thus far focused mainly on mechanism synthesis considering only kinematic characteristics describing a desired path or motion. Here, we propose a new topology optimization method that synthesizes a linkage mechanism considering both kinematic and compliance (K&C) characteristics simultaneously, as compliance characteristics can also significantly affect the linkage mechanism performance; compliance characteristics dictate how elastic components, such as bushings in a vehicle suspension, are deformed by external forces. To achieve our objective, we use the spring-connected rigid block model (SBM) developed earlier for mechanism synthesis considering only kinematic characteristics, but we make it suitable for the simultaneous consideration of K&C characteristics during mechanism synthesis by making its zero-length springs multifunctional. Variable stiffness springs were used to identify the mechanism kinematic configuration only, but now in the proposed approach, they serve to determine not only the mechanism kinematic configuration but also the compliance element distribution. In particular, the ground-anchoring springs used to anchor a linkage mechanism to the ground are functionalized to simulate actual bushings and to identify the desired linkage kinematic chain. After the proposed formulation and numerical implementation are presented, case studies are considered. In particular, the effectiveness of the proposed method is demonstrated with a simplified two-dimensional vehicle suspension design problem.

References

1.
Erdman
,
A. G.
, and
Sandor
,
G. N.
,
1997
,
Mechanism Design: Analysis and Synthesis
, Vol.
1
,
Prentice Hall
,
NJ
.
2.
Rattan
,
S. S.
,
2009
,
Theory of Machines
,
McGraw-Hill Higher Education
,
New Delhi
.
3.
Norton
,
R. L.
,
2011
,
Kinematics and Dynamics of Machinery
,
McGraw-Hill
,
New York
.
4.
Olson
,
D. G.
,
Erdman
,
A. G.
, and
Riley
,
D. R.
,
1985
, “
A Systematic Procedure for Type Synthesis of Mechanisms With Literature Review
,”
Mech. Mach. Theory
,
20
(
4
), pp.
285
295
.
5.
Kawamoto
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
, “
Planar Articulated Mechanism Design by Graph Theoretical Enumeration
,”
Struct. Multidisciplinary Optim.
,
27
(
4
), pp.
295
299
.
6.
Kawamoto
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
, “
Articulated Mechanism Design With a Degree of Freedom Constraint
,”
Int. J. Numer. Meth. Eng.
,
61
(
9
), pp.
1520
1545
. 10.1002/nme.1119
7.
Kawamoto
,
A.
,
2005
, “
Path-Generation of Articulated Mechanisms by Shape and Topology Variations in Non-Linear Truss Representation
,”
Int. J. Numer. Meth. Eng.
,
64
(
12
), pp.
1557
1574
. 10.1002/nme.1407
8.
Stolpe
,
M.
, and
Kawamoto
,
A.
,
2005
, “
Design of Planar Articulated Mechanisms Using Branch and Bound
,”
Mathematical Program
,
103
(
2
), pp.
357
397
.
9.
Kim
,
Y. Y.
,
Jang
,
G.-W.
,
Park
,
J. H.
,
Hyun
,
J. S.
, and
Nam
,
S. J.
,
2007
, “
Automatic Synthesis of a Planar Linkage Mechanism With Revolute Joints by Using Spring-Connected Rigid Block Models
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
930
940
. 10.1115/1.2747636
10.
Ohsaki
,
M.
, and
Nishiwaki
,
S.
,
2009
, “
Generation of Link Mechanism by Shape-Topology Optimization of Trusses Considering Geometrical Nonlinearity
,”
J. Comput. Sci. Technol.
,
3
(
1
), pp.
46
53
.
11.
Kim
,
B. S.
, and
Yoo
,
H. H.
,
2012
, “
Unified Synthesis of a Planar Four-Bar Mechanism for Function Generation Using a Spring-Connected Arbitrarily Sized Block Model
,”
Mech. Mach. Theory
,
49
, pp.
141
156
.
12.
Nam
,
S. J.
,
Jang
,
G.-W.
, and
Kim
,
Y. Y.
,
2012
, “
The Spring-Connected Rigid Block Model Based Automatic Synthesis of Planar Linkage Mechanisms: Numerical Issues and Remedies
,”
ASME J. Mech. Des.
,
134
(
5
), p.
051002
. 10.1115/1.4006266
13.
Kim
,
B. S.
, and
Yoo
,
H. H.
,
2014
, “
Unified Mechanism Synthesis Method of a Planar Four-Bar Linkage for Path Generation Employing a Spring-Connected Arbitrarily Sized Rectangular Block Model
,”
Multibody Syst. Dynam.
,
31
(
3
), pp.
241
256
.
14.
Kim
,
S. I.
, and
Kim
,
Y. Y.
,
2014
, “
Topology Optimization of Planar Linkage Mechanisms
,”
Int. J. Numer. Meth. Eng.
,
98
(
4
), pp.
265
286
. 10.1002/nme.4635
15.
Kim
,
B. S.
, and
Yoo
,
H. H.
,
2015
, “
Body Guidance Syntheses of Four-Bar Linkage Systems Employing a Spring-Connected Block Model
,”
Mech. Mach. Theory
,
85
, pp.
147
160
.
16.
Kang
,
S. W.
,
Kim
,
S. I.
, and
Kim
,
Y. Y.
,
2016
, “
Topology Optimization of Planar Linkage Systems Involving General Joint Types
,”
Mech. Mach. Theory
,
104
, pp.
130
160
.
17.
Kang
,
S. W.
, and
Kim
,
Y. Y.
,
2018
, “
Unified Topology and Joint Types Optimization of General Planar Linkage Mechanisms
,”
Struct. Multidisciplinary Optim.
,
57
(
5
), pp.
1955
1983
.
18.
Kim
,
S. I.
,
Kang
,
S. W.
,
Yi
,
Y.-S.
,
Park
,
J.
, and
Kim
,
Y. Y.
,
2018
, “
Topology Optimization of Vehicle Rear Suspension Mechanisms
,”
Int. J. Numer. Meth. Eng.
,
113
(
8
), pp.
1412
1433
. 10.1002/nme.5573
19.
Yim
,
N. H.
,
Kang
,
S. W.
, and
Kim
,
Y. Y.
,
2019
, “
Topology Optimization of Planar Gear-Linkage Mechanisms
,”
ASME J. Mech. Des.
,
141
(
3
), p.
032301
. 10.1115/1.4042212
20.
Yu
,
J.
,
Han
,
S. M.
, and
Kim
,
Y. Y.
,
2020
, “
Simultaneous Shape and Topology Optimization of Planar Linkage Mechanisms Based on the Spring-Connected Rigid Block Model
,”
ASME J. Mech. Des.
,
142
(
1
), p.
011401
. 10.1115/1.4044327
21.
Han
,
S. M.
,
In Kim
,
S.
, and
Kim
,
Y. Y.
,
2017
, “
Topology Optimization of Planar Linkage Mechanisms for Path Generation Without Prescribed Timing
,”
Struct. Multidisciplinary Optim.
,
56
(
3
), pp.
501
517
.
22.
Birglen
,
L.
,
Laliberté
,
T.
, and
Gosselin
,
C. M.
,
2007
,
Underactuated Robotic Hands
,
Springer
,
Berlin
.
23.
Dong
,
D.
,
Ge
,
W.
,
Liu
,
S.
,
Xia
,
F.
, and
Sun
,
Y.
,
2017
, “
Design and Optimization of a Powered Ankle-Foot Prosthesis Using a Geared Five-Bar Spring Mechanism
,”
Int. J. Adv. Robot. Syst.
,
14
(
3
), p.
172988141770454
.
24.
Liu
,
J.
,
Xiong
,
C.
, and
Fu
,
C.
,
2019
, “
An Ankle Exoskeleton Using a Lightweight Motor to Create High Power Assistance for Push-Off
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041001
. 10.1115/1.4043456
25.
Luo
,
H.-T.
, and
Zhao
,
J.-S.
,
2018
, “
Synthesis and Kinematics of a Double-Lock Overconstrained Landing Gear Mechanism
,”
Mech. Mach. Theory
,
121
, pp.
245
258
.
26.
Rice
,
J. J.
,
Schimmels
,
J. M.
, and
Huang
,
S.
,
2015
, “
Design and Evaluation of a Passive Ankle Prosthesis With Powered Push-Off
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021012
. 10.1115/1.4031302
27.
Sun
,
Y.
,
Ge
,
W.
,
Zheng
,
J.
, and
Dong
,
D.
,
2015
, “
Design and Evaluation of a Prosthetic Knee Joint Using the Geared Five-Bar Mechanism
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
6
), pp.
1031
1038
.
28.
Tong
,
S. H.
,
2006
, “
Design of High-Stiffness Five-Bar and Seven-Bar Linkage Structures by Using the Concept of Orthogonal Paths
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
430
435
. 10.1115/1.2167652
29.
Heißing
,
B.
, and
Ersoy
,
M.
,
2010
,
Chassis Handbook: Fundamentals, Driving Dynamics, Components, Mechatronics, Perspectives
,
Springer
,
New York
.
30.
Yi
,
Y.-S.
,
Park
,
J.
, and
Hong
,
K.-J.
,
2014
, “
Design Optimization of Suspension Kinematic and Compliance Characteristics
,”
SAE Technical Paper, 2014-01-0394
.
31.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Meth. Eng.
,
24
(
2
), pp.
359
373
. 10.1002/nme.1620240207
You do not currently have access to this content.