Abstract

This paper proposes a new methodology for time-dependent reliability and random vibrations of nonlinear vibratory systems using a combination of a time-dependent adjoint variable (AV) method and a projected differentiation (PD) method. The proposed approach is called AV-PD. The vibratory system is excited by stationary Gaussian or non-Gaussian input random processes. A Karhunen–Loeve (KL) expansion expresses each input random process in terms of standard normal random variables. The nonlinear equations of motion (EOM) are linearized using a Taylor expansion using the first-order derivatives of the output with respect to the input KL random variables. An adjoint approach obtains the output derivatives accurately and efficiently requiring the solution of as many sets of EOM as the number of outputs of interest, independently of the number of KL random variables. The proposed PD method then computes the autocorrelation function of each output process at an additional cost of solving as many sets of EOM as the number of outputs of interest, independently of the time horizon (simulation time). A time-dependent reliability analysis is finally performed using a KL expansion of the output processes and Monte Carlo simulation (MCS). The number of solutions of the EOM scales only with the number of output random processes which is commonly much smaller than the number of input KL random variables. The efficiency and accuracy of the proposed approach is demonstrated using a four degree-of-freedom (DOF) half-car vibratory problem.

References

1.
Zhang
,
J.
, and
Du
,
X.
,
2011
, “
Time-Dependent Reliability Analysis for Function Generator Mechanisms
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031005
. 10.1115/1.4003539
2.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
. 10.1016/j.ress.2003.10.005
3.
Hu
,
Z.
, and
Du
,
X.
,
2012
, “
Reliability Analysis for Hydrokinetic Turbine Blades
,”
Renew. Energy
,
48
, pp.
251
262
. 10.1016/j.renene.2012.05.002
4.
Hagen
,
O.
, and
Tvedt
,
L.
,
1991
, “
Vector Process Out-Crossing as Parallel System Sensitivity Measure
,”
J. Eng. Mech.
,
117
(
10
), pp.
2201
2220
. 10.1061/(ASCE)0733-9399(1991)117:10(2201)
5.
Engelund
,
S.
,
Rackwitz
,
R.
, and
Lange
,
C.
,
1995
, “
Approximations of First-Passage Times for Differentiable Processes Based on Higher-Order Threshold Crossings
,”
Probab. Eng. Mech.
,
10
(
1
), pp.
53
60
. 10.1016/0266-8920(94)00008-9
6.
Streicher
,
H.
, and
Rackwitz
,
R.
,
2004
, “
Time-Variant Reliability-Oriented Structural Optimization and a Renewal Model for Life-Cycle Costing
,”
Probab. Eng. Mech.
,
19
(
1
), pp.
171
183
. 10.1016/j.probengmech.2003.11.014
7.
Lutes
,
L. D.
, and
Sarkani
,
S.
,
2009
, “Reliability Analysis of Systems Subject to First-Passage Failure,” Report No. NASA/CR-2009-215782.
8.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Li
,
J.
,
2010
, “
Design for Lifecycle Cost Using Time-Dependent Reliability
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091008
. 10.1115/1.4002200
9.
Rice
,
S. O.
,
1954
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
23
(
3
), pp.
282
332
. [Re-Published
Wax
,
N.
,
1954
,
Selected Papers on Noise and Stochastic Processes
, New York, Dover]. 10.1002/j.1538-7305.1944.tb00874.x
10.
Mourelatos
,
Z. P.
,
Majcher
,
M.
, and
Geroulas
,
V.
,
2016
, “
Time-Dependent Reliability Analysis of Vibratory Systems With Random Parameters
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
031007
. 10.1115/1.4032720
11.
Hu
,
Z.
,
Li
,
H.
,
Du
,
X.
, and
Chandrashekhara
,
K.
,
2013
, “
Simulation-Based Time-Dependent Reliability Analysis for Composite Hydrokinetic Turbine Blades
,”
Struct. Multidiscipl. Optim.
,
47
(
5
), pp.
765
781
. 10.1007/s00158-012-0839-8
12.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Upcrossing Rates
,”
Struct. Multidiscipl. Optim.
,
48
(
5
), pp.
893
907
. 10.1007/s00158-013-0937-2
13.
Madsen
,
P. H.
, and
Krenk
,
S.
,
1984
, “
An Integral Equation Method for the First Passage Problem in Random Vibration
,”
ASME J. Appl. Mech.
,
51
(
3
), pp.
674
679
. 10.1115/1.3167691
14.
Condra
,
L.
,
2019
,
Reliability Improvement With Design of Experiments
, 2nd ed.,
CRC Press
,
New York
.
15.
Papadrakakis
,
M.
, and
Lagaros
,
N. D.
,
2002
, “
Reliability-Based Structural Optimization Using Neural Networks and Monte Carlo Simulation
,”
Comput. Meth. Appl. Mech. Eng.
,
191
(
32
), pp.
3491
3507
. 10.1016/S0045-7825(02)00287-6
16.
Deng
,
J.
,
Gu
,
D.
,
Li
,
X.
, and
Yue
,
Z. Q.
,
2005
, “
Structural Reliability Analysis for Implicit Performance Functions Using Artificial Neural Networks
,”
Struct. Saf.
,
27
(
1
), pp.
25
48
. 10.1016/j.strusafe.2004.03.004
17.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051401
. 10.1115/1.4029520
18.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
. 10.1115/1.4033428
19.
Du
,
X.
,
2014
, “
Time-Dependent Mechanism Reliability Analysis With Envelope Functions and First-Order Approximation
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081010
. 10.1115/1.4027636
20.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
. 10.1115/1.4007931
21.
Li
,
J.
,
Chen
,
J.
, and
Fan
,
W.
,
2007
, “
The Equivalent Extreme-Value Event and Evaluation of the Structural System Reliability
,”
Struct. Saf.
,
29
(
2
), pp.
112
131
. 10.1016/j.strusafe.2006.03.002
22.
Singh
,
A.
, and
Mourelatos
,
Z. P.
,
2010
, “
On the Time-Dependent Reliability of Non-Monotonic, Non-Repairable Systems
,”
SAE Int. J. Mater. Manuf.
,
3
(
1
), pp.
425
444
. 10.4271/2010-01-0696
23.
Geroulas
,
V.
,
Mourelatos
,
Z. P.
,
Tsianika
,
V.
, and
Baseski
,
I.
,
2018
, “
Reliability Analysis of Nonlinear Vibratory Systems Under Non-Gaussian Loads
,”
ASME J. Mech. Des.
,
140
(
2
), p.
021404
. 10.1115/1.4038212
24.
Papadimitriou
,
D. I.
,
Mourelatos
,
Z. P.
,
Patil
,
S.
,
Hu
,
Z.
,
Geroulas
,
V.
, and
Tsianika
,
V.
,
2019
, “
Reliability Analysis of Nonlinear Vibratory Systems Under Non-Gaussian Loads Using a Sensitivity-Based Propagation of Moments
,”
ASME J. Mech. Des.
,
142
(
6
), p.
061704
. Also in Proceedings ASME 2019 Design Engineering Technical Conferences, Paper DETC2019-97158, Anaheim, CA, Aug. 18–21, 2019. 10.1115/1.4046070
25.
Phoon
,
K. K.
,
Huang
,
H. W.
, and
Quek
,
S. T.
,
2005
, “
Simulation of Strongly Non-Gaussian Processes Using Karhunen–Loeve Expansion
,”
Probab. Eng. Mech.
,
20
(
2
), pp.
188
198
. 10.1016/j.probengmech.2005.05.007
26.
James
,
K. A.
, and
Waisman
,
H.
,
2015
, “
Topology Optimization of Viscoelastic Structures Using a Time-Dependent Adjoint Method
,”
Comput. Meth. Appl. Mech. Eng.
,
285
, pp.
166
187
. 10.1016/j.cma.2014.11.012
27.
Min
,
S.
,
Kikuchi
,
N.
,
Park
,
Y.
,
Kim
,
S.
, and
Chang
,
S.
,
1999
, “
Optimal Topology Design of Structures Under Dynamic Loads
,”
Struct. Optim.
,
17
(
2–3
), pp.
208
218
. 10.1007/BF01195945
28.
Rong
,
J.
,
Xie
,
Y.
,
Yang
,
X.
, and
Liang
,
Q.
,
2000
, “
Topology Optimization of Structures Under Dynamic Response Constraints
,”
J. Sound Vib.
,
234
(
2
), pp.
177
189
. 10.1006/jsvi.1999.2874
29.
Ma
,
Z.-D.
,
Kikuchi
,
N.
, and
Cheng
,
H.-C.
,
1995
, “
Topological Design for Vibrating Structures
,”
Comput. Meth. Appl. Mech. Eng.
,
121
(
1
), pp.
259
280
.
30.
Shu
,
L.
,
Wang
,
M. Y.
, and
Ma
,
Z.
,
2014
, “
Level Set Based Topology Optimization of Vibrating Structures for Coupled Acoustic-Structural Dynamics
,”
Comput. Struct.
,
132
, pp.
34
42
. 10.1016/j.compstruc.2013.10.019
31.
Molter
,
A.
,
da Silveira
,
O. A.
,
Bottega
,
V.
, and
Fonseca
,
J. S.
,
2013
, “
Integrated Topology Optimization and Optimal Control for Vibration Suppression in Structural Design
,”
Struct. Multidiscipl. Optim.
,
47
(
3
), pp.
389
397
. 10.1007/s00158-012-0829-x
32.
Lambert
,
S.
,
Pagnacco
,
E.
,
Khalij
,
L.
, and
El Hami
,
A.
,
2006
, “
Topology Optimization of Structures Subject to Random Excitations With Fatigue Life Constraints
,”
3rd European Conference on Computational Mechanics
,
Dordrecht, The Netherlands
.
33.
Jeong
,
S. H.
,
Choi
,
D.-H.
, and
Yoon
,
G. H.
,
2015
, “
Fatigue and Static Failure Considerations Using a Topology Optimization Method
,”
Appl. Math. Model.
,
39
(
3
), pp.
1137
1162
. 10.1016/j.apm.2014.07.020
34.
Papadimitriou
,
D. I.
, and
Giannakoglou
,
K. C.
,
2008
, “
Aerodynamic Shape Optimization Using First and Second Order Adjoint and Direct Approaches
,”
Arch. Comput. Meth. Eng.
,
15
(
4
), pp.
447
488
. 10.1007/s11831-008-9025-y
35.
Gandhi
,
P.
,
Adarsh
,
S.
, and
Ramachandran
,
K. I.
,
2017
, “
Performance Analysis of Half Car Suspension Model With 4 DOF Using PID, LQR, FUZZY and ANFIS Controllers
,”
Procedia Comput. Sci.
,
115
, pp.
2
13
. 10.1016/j.procs.2017.09.070
You do not currently have access to this content.