Abstract

Modular and reconfigurable manipulators have gained popularity especially in the service sector, where the use of customized configurations has increased. Adaptable modular designs have come into advances in achieving required configuration of a robotic manipulator. As reported in literature, various designs of the modules mainly with conventional configurations are presented and a few are reported with unconventional adjustments. To cater the non-repetitive applications, this paper presents an optimal architectural design for unconventional parameters for customized reconfigurability. This lighter and easier-to-connect version is also applicable to n-DoF and unconventional robotic parameters. Architecture Prominent Sectioning (APS) strategy is proposed which assumes an architecture as a set of point masses and optimally relocate components with respect to the minimization of the joint torques. Modules are considered to be 3D printable using poly-lactic acid (PLA), a thermoplastic material, and thus light in weight. The new modular architecture design is validated through the assemblage of conventional/unconventional configurations using two types of modules namely Heavy (H) and Light (L). Along with that, worst torque analyses for the different configurations have been done in order to provide a strategy for assembly combinations. A comparative study is presented based upon the payload-to-weight ratio, involving other reported architectures.

References

1.
Suarez
,
A.
,
Jimenez-Cano
,
A. E.
,
Vega
,
V. M.
,
Heredia
,
G.
,
Rodriguez-Castaño
,
A.
, and
Ollero
,
A.
,
2018
, “
Design of a Lightweight Dual Arm System for Aerial Manipulation
,”
Mechatronics
,
50
, pp.
30
44
. 10.1016/j.mechatronics.2018.01.005
2.
Rivera
,
G. P.
,
Eichmann
,
C.
,
Scherzinger
,
S.
,
Puck
,
L.
,
Roennau
,
A.
, and
Dillmann
,
R.
,
2019
, “
Flexible, Personal Service Robot for Als Patients*
,”
2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Dali, China
, pp.
1595
1600
.
3.
Singh
,
S.
,
Singla
,
A.
, and
Singla
,
E.
,
2018
, “
Modular Manipulators for Cluttered Environments: A Task-Based Configuration Design Approach
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051010
. 10.1115/1.4040633
4.
Orsag
,
M.
,
Korpela
,
C.
,
Bogdan
,
S.
, and
Oh
,
P.
,
2017
, “
Dexterous Aerial Robots-Mobile Manipulation Using Unmanned Aerial Systems
,”
IEEE Trans. Rob.
,
33
(
6
), pp.
1453
1466
. 10.1109/TRO.2017.2750693
5.
Chen
,
I.-M.
, and
Yim
,
M.
,
2016
, “Modular Robots,”
Springer Handbook of Robotics
,
B.
Siciliano
and
O.
Khatib
, eds.,
Springer International Publishing
,
Cham
, pp.
531
542
.
6.
Paredis
,
C. J.
,
Brown
,
H. B.
, and
Khosla
,
P. K.
,
1997
, “
A Rapidly Deployable Manipulator System
,”
Rob. Auto. Syst.
,
21
(
3
), pp.
289
304
. 10.1016/S0921-8890(97)00081-X
7.
Ahmadzadeh
,
H.
,
Masehian
,
E.
, and
Asadpour
,
M.
,
2016
, “
Modular Robotic Systems: Characteristics and Applications
,”
J. Intel. Rob. Syst.
,
81
(
3–4
), pp.
317
357
. 10.1007/s10846-015-0237-8
8.
Liu
,
J.
,
Zhang
,
X.
, and
Hao
,
G.
,
2016
, “
Survey on Research and Development of Reconfigurable Modular Robots
,”
Adv. Mech. Eng.
,
8
(
8
), p.
1687814016659597
. 10.1177/1687814016659597
9.
Stravopodis
,
N.
,
Valsamos
,
C.
, and
Moulianitis
,
V. C.
,
2019
, “An Integrated Taxonomy and Critical Review of Module Designs for Serial Reconfigurable Manipulators,𠇍 Advances in Service and Industrial Robotics. RAAD 2019. Advances in Intelligent Systems and Computing,
K.
Berns
and
D.
Görges
, eds., Vol.
980
,
Springer
,
Cham
.
10.
Seonghun
,
H.
,
Dongeun
,
C.
,
Sungchul
,
K.
,
Hyeongcheol
,
L.
, and
Lee
,
W.
,
2016
, “
Design of Manually Reconfigurable Modular Manipulator with Three Revolute Joints and Links
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
.
11.
Cohen
,
R.
,
Lipton
,
M.
,
Dai
,
M.
, and
Benhabib
,
B.
,
1992
, “
Conceptual Design of a Modular Robot
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
117
125
. 10.1115/1.2916904
12.
Kereluk
,
J. A.
, and
Emami
,
M. R.
,
2017
, “
Task-based Optimization of Reconfigurable Robot Manipulators
,”
Adv. Rob.
,
31
(
16
), pp.
836
850
. 10.1080/01691864.2017.1362995
13.
Kim
,
K.
,
Choi
,
W.
,
Lee
,
W.
,
Chung
,
W.
, and
Kang
,
S.
,
2017
, “
Design of Joint Module Equipped with Manually Configurable Reducer for Gearing
,”
14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)
,
Jeju, South Korea
, IEEE, pp.
597
601
.
14.
Liu
,
Y.
,
Xie
,
Z.
,
Zhang
,
Q.
, and
Wang
,
B.
,
2012
, “
Hit-arm I High Speed Dexterous Robot Arm
,”
2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Guangzhou, China
, IEEE, pp.
26
29
.
15.
Liu
,
Y.
,
Xu
,
H.
,
Geng
,
C.
, and
Chen
,
G.
,
2017
, “
A Modular Manipulator for Industrial Applications: Design and Implement
,”
2nd International Conference on Robotics and Automation Engineering (ICRAE)
,
Shanghai, China
, IEEE, pp.
331
335
.
16.
Moulianitis
,
V. C.
,
Synodinos
,
A. I.
,
Valsamos
,
C. D.
, and
Aspragathos
,
N. A.
,
2016
, “
Task-Based Optimal Design of Metamorphic Service Manipulators
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061011
. 10.1115/1.4033665
17.
Song
,
L.
, and
Yang
,
S.
,
2011
,
Research on Modular Design of Perpendicular Jointed Industrial Robots. Intelligent Robotics and Applications. ICIRA 2011. Lecture Notes in Computer Science
,
S.
Jeschke
,
H.
Liu
, and
D.
Schilberg
, eds., Vol.
7101
,
Springer
,
Berlin, Heidelberg
.
18.
Brandstötter
,
M.
,
Angerer
,
A.
, and
Hofbaur
,
M.
,
2015
, “
The Curved Manipulator (cuma-type Arm): Realization of a Serial Manipulator With General Structure in Modular Design
,”
Proceedings of the 14th IFToMM World Congress
,
Taipei, Taiwan
, pp.
403
409
.
19.
Brandstötter
,
M.
,
Gallina
,
P.
,
Seriani
,
S.
, and
Hofbaur
,
M.
,
2019
, “Task-Dependent Structural Modifications on Reconfigurable General Serial Manipulators,𠇍
Advances in Service and Industrial Robotics. RAAD 2018. Mechanisms and Machine Science
,
N.
Aspragathos
,
P.
Koustoumpardis
, and
V.
Moulianitis
, eds., Vol.
67
,
Springer
,
Cham
.
20.
Fang
,
H.
,
Guo
,
L.
, and
Bai
,
S.
,
2015
, “A Light Weight Arm Designed with Modular Joints,”
Recent Advances in Mechanism Design for Robotics. Mechanisms and Machine Science
,
S.
Bai
and
M.
Ceccarelli
, eds., Vol.
33
,
Springer
,
Cham
, pp.
47
54
.
21.
Arakelian
,
V.
,
2017
, “
Inertia Forces and Moments Balancing in Robot Manipulators: A Review
,”
Adv. Rob.
,
31
(
14
), pp.
717
726
. 10.1080/01691864.2017.1348984
22.
Wei
,
B.
, and
Zhang
,
D.
,
2020
, “
A Review of Dynamic Balancing for Robotic Mechanisms
,”
Robotica
, pp.
1
17
. 10.1017/S0263574720000168
23.
Yim
,
N. H.
,
Kang
,
S. W.
, and
Kim
,
Y. Y.
,
2019
, “
Topology Optimization of Planar Gear-Linkage Mechanisms
,”
ASME J. Mech. Des.
,
141
(
3
), p.
032301
. 10.1115/1.4042212
24.
Wang
,
X.
,
Zhang
,
D.
,
Zhao
,
C.
,
Zhang
,
P.
,
Zhang
,
Y.
, and
Cai
,
Y.
,
2019
, “
Optimal Design of Lightweight Serial Robots by Integrating Topology Optimization and Parametric System Optimization
,”
Mech. Mach. Theory.
,
132
, pp.
48
65
. 10.1016/j.mechmachtheory.2018.10.015
25.
Zhou
,
L.
, and
Bai
,
S.
,
2015
, “
A New Approach to Design of a Lightweight Anthropomorphic Arm for Service Applications
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031001
. 10.1115/1.4028292
26.
Mohamed
,
R. P.
,
Xi
,
F. J.
, and
Finistauri
,
A. D.
,
2010
, “
Module-Based Static Structural Design of a Modular Reconfigurable Robot
,”
ASME J. Mech. Des.
,
132
(
1
), p.
014501
. 10.1115/1.4000639
27.
Mohamed
,
R. P.
,
Xi
,
F. J.
, and
Lin
,
Y.
,
2015
, “
A Combinatorial Search Method for the Quasi-sSatic Payload Capacity of Serial Modular Reconfigurable Robots
,”
Mech. Mach. Theory.
,
92
, pp.
240
256
. 10.1016/j.mechmachtheory.2015.05.016
28.
Mohamed
,
R. P.
,
Xi
,
F. J.
, and
Chen
,
T.
,
2017
, “
A Pose-Based Structural Dynamic Model Updating Method for Serial Modular Robots
,”
Mechanical Systems and Signal Processing
,
85
, pp.
530
555
. 10.1016/j.ymssp.2016.08.026
29.
Arakelian
,
V.
,
Le Baron
,
J.-P.
, and
Mottu
,
P.
,
2011
, “
Torque Minimisation of the 2-dof Serial Manipulators Based on Minimum Energy Consideration and Optimum Mass Redistribution
,”
Mechatronics
,
21
(
1
), pp.
310
314
. 10.1016/j.mechatronics.2010.11.009
30.
Gupta
,
V.
,
Saha
,
S. K.
, and
Chaudhary
,
H.
,
2019
, “
Optimum Design of Serial Robots
,”
ASME J. Mech. Des.
,
141
(
8
), pp.
1
41
. 10.1115/1.4042623
31.
Singh
,
S.
, and
Singla
,
E.
,
2016
, “
Realization of Task-Based Designs Involving Dh Parameters: a Modular Approach
,”
Intelligent Service Robotics
,
9
(
3
), pp.
289
296
. 10.1007/s11370-015-0186-x
32.
Dogra
,
A.
,
Padhee
,
S. S.
, and
Singla
,
E.
,
2019
, “
Towards Dynamics and Control of Modular Reconfigurable Manipulators
,”
Proceedings of the Advances in Robotics 2019, Association for Computing Machinery, AIR 2019
,
Chennai, India
.
33.
Chaudhary
,
H.
, and
Saha
,
S. K.
,
2009
,
Dynamics and Balancing of Multibody Systems
, 1st ed., Vol.
37
,
Springer-Verlag
,
Berlin, Heidelberg
.
34.
Fu
,
K. S.
,
Gonzalez
,
R.
, and
Lee
,
C. G.
,
1987
,
Robotics: Control Sensing. Vis
,
Tata McGraw-Hill Education
,
New Delhi, India
.
35.
Vinay
,
Gupta
,
Himanshu
,
C.
, and
Saha
,
S. K
,
2015
, “
Dynamics and Actuating Torque Optimization of Planar Robots
,”
J. Mech. Sci. Tech.
,
26
, pp.
2699
2704
. 10.1007/s12206-015-0517-z
36.
Campeau-Lecours
,
A.
,
Lamontagne
,
H.
,
Latour
,
S.
,
Fauteux
,
P.
,
Maheu
,
V.
,
Boucher
,
F.
,
Deguire
,
C.
, and
L’Ecuyer
,
L.-J. C.
,
2017
, “
Kinova Modular Robot Arms for Service Robotics Applications
,”
Int. J. Robot. Appl. Technol.
,
5
(
2
), pp.
49
71
. 10.4018/IJRAT.2017070104
37.
Hannaford
,
B.
,
Rosen
,
J.
,
Friedman
,
D. W.
,
King
,
H.
,
Roan
,
P.
,
Cheng
,
L.
,
Glozman
,
D.
,
Ma
,
J.
,
Kosari
,
S. N.
, and
White
,
L.
,
2012
, “
Raven-ii: An Open Platform for Surgical Robotics Research
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
954
959
. 10.1109/TBME.2012.2228858
38.
Saha
,
S. K.
,
2014
,
Introduction to Robotics
,
Tata McGraw-Hill Education
,
New Delhi, India
.
39.
Acaccia
,
G.
,
Bruzzone
,
L.
, and
Razzoli
,
R.
,
2008
, “
A Modular Robotic System for Industrial Applications
,”
Assembly Auto.
,
28
(
2
), pp.
151
162
. 10.1108/01445150810863734
40.
Schuler
,
S.
,
Kaufmann
,
V.
,
Houghton
,
P.
, and
Székely
,
G. S.
,
2006
, “
Design and Development of a Joint for the Dextrous Robot Arm
,”
Ninth ESA Workshop on Advanced Space Technologies for Robotics and Automation
,
Noordwijk, The Netherlands
, pp.
28
30
.
You do not currently have access to this content.