Abstract

This paper presents a novel deployable antenna mechanism for synthetic aperture radar (SAR) satellites. First, the topological structure of the new deployable mechanism is designed based on the five conditions expected to be satisfied. Then, the kinematic model of the new mechanism is fully established based on vector equations and structural symmetry. Third, the deployed/folded ratio and interference of the new mechanism are analyzed. Finally, a typical numerical example is used to illustrate the effectiveness of the theoretical analysis, and a physical prototype is developed to show the fabrication feasibility of the new deployable mechanism. Compared with the latest counterpart for SAR satellites in the existing literature, the new deployable mechanism of this paper has a simpler driving system, simpler deployment movement, and no prismatic pairs with cold welding problems. With these characteristics, the presented new mechanism has a good application prospect in SAR satellites.

References

1.
Escrig
,
F.
, and
Valcarcel
,
J. P.
,
1993
, “
Geometry of Expandable Space Structures
,”
Int. J. Space Struct.
,
8
(
1–2
), pp.
71
84
.
2.
Hanaor
,
A.
, and
Levy
,
R.
,
2001
, “
Evaluation of Deployable Structures for Space Enclosures
,”
Int. J. Space Struct.
,
16
(
4
), pp.
211
229
.
3.
Puig
,
L.
,
Barton
,
A.
, and
Rando
,
N.
,
2010
, “
A Review on Large Deployable Structures for Astrophysics Missions
,”
Acta Astronaut.
,
67
(
1–2
), pp.
12
26
.
4.
Huang
,
H.
,
Li
,
B.
,
Zhu
,
J.
, and
Qi
,
X.
,
2016
, “
A New Family of Bricard-Derived Deployable Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
034503
.
5.
Xu
,
Y.
,
Chen
,
Y.
,
Liu
,
W.
,
Ma
,
X.
,
Yao
,
J.
, and
Zhao
,
Y.
,
2020
, “
Degree of Freedom and Dynamic Analysis of the Multi-Loop Coupled Passive-Input Overconstrained Deployable Tetrahedral Mechanisms for Truss Antennas
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011010
.
6.
Chen
,
Y.
, and
You
,
Z.
,
2009
, “
Two-Fold Symmetrical 6r Foldable Frame and Its Bifurcations
,”
Int. J. Solids Struct.
,
46
(
25–26
), pp.
4504
4514
.
7.
Liu
,
S.
, and
Chen
,
Y.
,
2009
, “
Myard Linkage and Its Mobile Assemblies
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1950
1963
.
8.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
.
9.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
A Spatial Eight-Bar Linkage and Its Association With the Deployable Platonic Mechanisms
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021010
.
10.
Song
,
X.
,
Deng
,
Z.
,
Guo
,
H.
,
Liu
,
R.
,
Li
,
L.
, and
Liu
,
R.
,
2017
, “
Networking of Bennett Linkages and Its Application on Deployable Parabolic Cylindrical Antenna
,”
Mech. Mach. Theory
,
109
, pp.
95
125
.
11.
Deng
,
Z.
,
Huang
,
H.
,
Li
,
B.
, and
Liu
,
R.
,
2011
, “
Synthesis of Deployable/Foldable Single Loop Mechanisms With Revolute Joints
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031006
.
12.
Wang
,
J.
, and
Kong
,
X.
,
2018
, “
Deployable Mechanisms Constructed by Connecting Orthogonal Bricard Linkages, 8r or 10r Single-Loop Linkages Using S Joints
,”
Mech. Mach. Theory
,
120
, pp.
178
191
.
13.
Wang
,
J.
, and
Kong
,
X.
,
2019
, “
A Novel Method for Constructing Multimode Deployable Polyhedron Mechanisms Using Symmetric Spatial Compositional Units
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020907
.
14.
Li
,
R.
,
Yao
,
Y.
, and
Kong
,
X.
,
2017
, “
Reconfigurable Deployable Polyhedral Mechanism Based on Extended Parallelogram Mechanism
,”
Mech. Mach. Theory
,
116
, pp.
467
480
.
15.
Li
,
R.
,
Yao
,
Y.
, and
Ding
,
X.
,
2018
, “
A Family of Reconfigurable Deployable Polyhedral Mechanisms Based on Semiregular and Johnson Polyhedral
,”
Mech. Mach. Theory
,
126
, pp.
344
358
.
16.
Ding
,
X.
,
Yang
,
Y.
, and
Dai
,
J. S.
,
2013
, “
Design and Kinematic Analysis of a Novel Prism Deployable Mechanism
,”
Mech. Mach. Theory
,
63
, pp.
35
49
.
17.
Nelson
,
T. G.
,
Lang
,
R. J.
,
Pehrson
,
N. A.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
Facilitating Deployable Mechanisms and Structures Via Developable Lamina Emergent Arrays
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031006
.
18.
Takamatsu
,
K.
, and
Onoda
,
J.
,
1991
, “
New Deployable Truss Concepts for Large Antenna Structures or Solar Concentrators
,”
J. Spacecr. Rockets
,
28
(
3
), pp.
330
338
.
19.
Xu
,
Y.
,
Guan
,
F.
,
Chen
,
J.
, and
Zheng
,
Y.
,
2012
, “
Structural Design and Static Analysis of a Double-Ring Deployable Truss for Mesh Antennas
,”
Acta Astronaut.
,
81
(
2
), pp.
545
554
.
20.
You
,
Z.
, and
Pellegrino
,
S.
,
1997
, “
Cable-Stiffened Pantographic Deployable Structures. Part 2—Mesh Reflector
,”
AIAA J.
,
35
(
8
), pp.
1348
1355
.
21.
Dai
,
L.
,
Guan
,
F.
, and
Guest
,
J. K.
,
2014
, “
Structural Optimization and Model Fabrication of a Double-Ring Deployable Antenna Truss
,”
Acta Astronaut.
,
94
(
2
), pp.
843
851
.
22.
Li
,
T.
,
2012
, “
Deployment Analysis and Control of Deployable Space Antenna
,”
Aerosp. Sci. Technol.
,
18
(
1
), pp.
42
47
.
23.
Thomson
,
M. W.
,
1999
, “
The Astromesh Deployable Reflector
,”
Antennas and Propagation Society International Symposium
,
Orlando, FL
,
July 11–16
, IEEE, Vol. 3, pp.
1516
1519
.
24.
Meguro
,
A.
,
Ishikawa
,
H.
, and
Tsujihata
,
A.
,
2006
, “
Study on Ground Verification for Large Deployable Modular Structures
,”
J. Spacecr. Rockets
,
43
(
4
), pp.
780
787
.
25.
Lopatin
,
A.
,
Rutkovskaya
,
M.
, and
Gantovnik
,
V.
,
2008
, “
Accuracy Analysis of the Reflective Surface of the Umbrella-Type Antenna
,”
J. Spacecr. Rockets
,
45
(
1
), pp.
149
151
.
26.
Wang
,
Y.
,
Liu
,
R.
,
Yang
,
H.
,
Cong
,
Q.
, and
Guo
,
H.
,
2015
, “
Design and Deployment Analysis of Modular Deployable Structure for Large Antennas
,”
J. Spacecr. Rockets
,
52
(
4
), pp.
1101
1111
.
27.
Thomas
,
W. D. R.
,
2004
, “
Radarsat-2 Extendible Support Structure
,”
Can. J. Remote Sens.
,
30
(
3
), pp.
282
286
.
28.
Campbell
,
B. E.
, and
Hawkins
,
W.
,
1979
, “
An 11-Meter Deployable Truss for the Seasat Radar Antenna
,”
Proceedings of the 12th Aerospace Mechanisms Symposium
,
Washington, DC
, p.
77
.
29.
Rosenqvist
,
A.
,
Shimada
,
M.
, and
Watanabe
,
M.
,
2004
, “
Alos Palsar: Technical Outline and Mission Concepts
,”
Proceedings of the 4th International Symposium on Retrieval of Bio- and Geophysical Parameters From SAR Data for Land Applications Innsbruck
,
Innsbruck, Austria
,
Nov. 16–19
, pp.
1
7
.
30.
Gralewski
,
M.
,
Adams
,
L.
, and
Hedgepeth
,
J.
,
1992
, “
Deployable Extendable Support Structure for the Radars at Synthetic Aperture Radar Antenna
,”
Proceedings of the 43rd International Astronautical Federation Congress
,
Washington, DC
,
Aug. 28–Sept. 5
, pp.
18
24
.
31.
Wang
,
H.
,
Wang
,
C. J.
,
Li
,
X.
, and
Lin
,
Q. H.
,
2012
, “
Large SAR Antenna Deployable Structure Design and Optimization
,”
Appl. Mech. Mater.
,
163
, pp.
62
65
.
32.
Tian
,
Y.
,
Yang
,
Y.
,
Tao
,
L.
, and
Zhang
,
X.
,
2016
, “
A Novel Deployable Array Mechanism With Two-Dimensional Expanding Applied to SAR Antenna
,”
Proceedings of the 2016 IEEE International Conference on Information and Automation (ICIA)
,
Ningbo, China
,
Aug. 1–3, IEEE, pp. 391–397
.
33.
Qi
,
X.
,
Huang
,
H.
,
Li
,
B.
, and
Deng
,
Z.
,
2016
, “
A Large Ring Deployable Mechanism for Space Satellite Antenna
,”
Aerosp. Sci. Technol.
,
58
, pp.
498
510
.
34.
Shi
,
C.
,
Guo
,
H.
,
Zhang
,
S.
,
Liu
,
R.
, and
Deng
,
Z.
,
2021
, “
Configuration Synthesis of Linear Foldable Over-Constrained Deployable Unit Based on Screw Theory
,”
Mech. Mach. Theory
,
156
, p.
104163
.
35.
Sarrus
,
P.
,
1853
, “
Note Sur La Transformation Des Mouvements Rectilignes Alternatifs, En Mouvements Circulaires, Et Reciproquement, Comptes. Rendus
,”
Acad. Sci., Paris
,
36
, p.
1036
.
You do not currently have access to this content.