Abstract

Function drives many early design considerations in product development, highlighting the importance of finding functionally similar examples if searching for sources of inspiration or evaluating designs against existing technology. However, it is difficult to capture what people consider is functionally similar and therefore, if measures that quantify and compare function using the products themselves are meaningful. In this work, human evaluations of similarity are compared to computationally determined values, shedding light on how quantitative measures align with human perceptions of functional similarity. Human perception of functional similarity is considered at two levels of abstraction: (1) the high-level purpose of a product and (2) how the product works. These human similarity evaluations are quantified by crowdsourcing 1360 triplet ratings at each functional abstraction and creating low-dimensional embeddings from the triplets. The triplets and embeddings are then compared to similarities that are computed between functional models using six representative measures, including both matching measures (e.g., cosine similarity) and network-based measures (e.g., spectral distance). The outcomes demonstrate how levels of abstraction and the fuzzy line between “highly similar” and “somewhat similar” products may impact human functional similarity representations and their subsequent alignment with computed similarity. The results inform how functional similarity can be leveraged by designers, with applications in creativity support tools, such as those used for design-by-analogy, or other computational methods in design that incorporate product function.

References

1.
Christensen
,
B. T.
, and
Schunn
,
C. D.
,
2007
, “
The Relationship of Analogical Distance to Analogical Function and Preinventive Structure: The Case of Engineering Design
,”
Memory Cognit.
,
35
(
1
), pp.
29
38
.
2.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2004
,
Product Design and Development
,
McGraw-Hill/Irwin
,
New York
.
3.
Goucher-Lambert
,
K.
,
Moss
,
J.
, and
Cagan
,
J.
,
2019
, “
A Neuroimaging Investigation of Design Ideation With and Without Inspirational Stimuli—Understanding the Meaning of Near and Far Stimuli
,”
Des. Stud.
,
60
, pp.
1
38
.
4.
Linsey
,
J. S.
,
Laux
,
J.
,
Clauss
,
E. F.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2007
, “
Effects of Analogous Product Representation on Design-By-Analogy
,”
DS 42: Proceedings of the 16th International Conference on Engineering Design (ICED 2007)
,
Paris, France
,
July 28–31
, pp.
337
338
(exec. Summ.), Full Paper No. DS42_P_477
.
5.
Linsey
,
J. S.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2008
, “
Modality and Representation in Analogy
,”
AI EDAM
,
22
(
2
), pp.
85
100
.
6.
Fu
,
K.
,
Murphy
,
J.
,
Yang
,
M.
,
Otto
,
K.
,
Jensen
,
D.
, and
Wood
,
K.
,
2015
, “
Design-by-Analogy: Experimental Evaluation of a Functional Analogy Search Methodology for Concept Generation Improvement
,”
Res. Eng. Des.
,
26
(
1
), pp.
77
95
.
7.
McAdams
,
D. A.
, and
Wood
,
K. L.
,
2002
, “
A Quantitative Similarity Metric for Design-by-Analogy
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
173
182
.
8.
Turner
,
C.
, and
Linsey
,
J.
,
2016
, “
Analogies From Function, Flow and Performance Metrics
,”
Workshop Proceedings from the 24th International Conference on Case Based Reasoning
,
Atlanta, GA
,
Oct. 31
.
9.
Taylor
,
L. E.
, and
Henderson
,
M. R.
,
1994
, “
The Roles of Features and Abstraction in Mechanical Design
,”
ASME 1994 Design Technical Conferences Collocated With the ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium
,
Minneapolis, MN
,
Sept. 11–14
, pp.
131
140
.
10.
Maier
,
J. F.
,
Eckert
,
C. M.
, and
Clarkson
,
P. J.
,
2017
, “
Model Granularity in Engineering Design—Concepts and Framework
,”
Des. Sci.
,
3
, p.
e1
.
11.
Caldwell
,
B. W.
,
Thomas
,
J. E.
,
Sen
,
C.
,
Mocko
,
G. M.
, and
Summers
,
J. D.
,
2012
, “
The Effects of Language and Pruning on Function Structure Interpretability
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061001
.
12.
Caldwell
,
B. W.
, and
Mocko
,
G. M.
,
2011
, “
Functional Similarity at Varying Levels of Abstraction
,”
ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, QC, Canada
,
Aug. 15–18
, pp.
431
441
.
13.
Kittur
,
A.
,
Yu
,
L.
,
Hope
,
T.
,
Chan
,
J.
,
Lifshitz-Assaf
,
H.
,
Gilon
,
K.
,
Ng
,
F.
,
Kraut
,
R. E.
, and
Shahaf
,
D.
,
2019
, “
Scaling Up Analogical Innovation With Crowds and AI
,”
Proc. Natl. Acad. Sci. U.S.A.
,
116
(
6
), pp.
1870
1877
.
14.
Hope
,
T.
,
Tamari
,
R.
,
Kang
,
H.
,
Hershcovich
,
D.
,
Chan
,
J.
,
Kittur
,
A.
, and
Shahaf
,
D.
,
2021
, “
Scaling Creative Inspiration With Fine-Grained Functional Facets of Product Ideas
,”
arXiv:2102.09761 [cs], Feb.
15.
Anandan
,
S.
,
Teegavarapu
,
S.
, and
Summers
,
J. D.
,
2006
, “
Issues of Similarity in Engineering Design
,”
ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Philadelphia, PA
,
Sept. 10–13
, pp.
73
82
.
16.
Ranawat
,
A.
, and
Hölttä-Otto
,
K.
,
2009
, “
Four Dimensions of Design Similarity
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2009
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
1069
1077
.
17.
Fischer
,
M. S.
,
Holder
,
D.
,
Maier
,
T.
, and
Fukuda
,
S.
,
2020
,
Advances in Affective and Pleasurable Design
,
Springer International Publishing
,
Cham
, pp.
3
12
.
18.
Fu
,
K.
,
Chan
,
J.
,
Schunn
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2013
, “
Expert Representation of Design Repository Space: A Comparison to and Validation of Algorithmic Output
,”
Des. Stud.
,
34
(
6
), pp.
729
762
.
19.
Kwon
,
E.
,
Huang
,
F.
, and
Goucher-Lambert
,
K.
,
2021
, “
Multi-Modal Search for Inspirational Examples in Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
,
Aug. 17–19
.
20.
Stone
,
R. B.
, and
Wood
,
K. L.
,
2000
, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
359
370
.
21.
Hirtz
,
J.
,
Stone
,
R.
,
Mcadams
,
D.
,
Szykman
,
S.
, and
Wood
,
K.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
, pp.
65
82
.
22.
Agyemang
,
M.
,
Linsey
,
J.
, and
Turner
,
C. J.
,
2017
, “
Transforming Functional Models to Critical Chain Models Via Expert Knowledge and Automatic Parsing Rules for Design Analogy Identification
,”
AI EDAM
,
31
(
4
), pp.
501
511
.
23.
Ferrero
,
V. J.
,
Alqseer
,
N.
,
Tensa
,
M.
, and
DuPont
,
B.
,
2020
, “
Using Decision Trees Supported by Data Mining to Improve Function-Based Design
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
,
Aug. 17–19
.
24.
Mikes
,
A.
,
Edmonds
,
K.
,
Stone
,
R.
, and
DuPont
,
B.
,
2020
, “
Optimizing an Algorithm for Data Mining a Design Repository to Automate Functional Modeling
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
,
Aug. 17–19
.
25.
Nandy
,
A.
,
Dong
,
A.
, and
Goucher-Lambert
,
K.
,
2021
, “
Evaluating Quantitative Measures for Assessing Functional Similarity in Engineering Design
,”
ASME J. Mech. Des.
,
144
(
3
), p.
031401
.
26.
Hebart
,
M. N.
,
Zheng
,
C. Y.
,
Pereira
,
F.
, and
Baker
,
C. I.
,
2020
, “
Revealing the Multidimensional Mental Representations of Natural Objects Underlying Human Similarity Judgements
,”
Nat. Human Behav.
,
4
(
11
), pp.
1173
1185
.
27.
Tversky
,
A.
,
1977
, “
Features of Similarity
,”
Psychol. Rev.
,
84
(
4
), pp.
327
352
.
28.
Goldstone
,
R. L.
,
Medin
,
D. L.
, and
Halberstadt
,
J.
,
1997
, “
Similarity in Context
,”
Memory Cognit.
,
25
(
2
), pp.
237
255
.
29.
Gentner
,
D.
, and
Markman
,
A. B.
,
1997
, “
Structure Mapping in Analogy and Similarity
,”
Am. Psychol.
,
52
(
1
), pp.
45
56
.
30.
Towne
,
W. B.
,
Rosé
,
C. P.
, and
Herbsleb
,
J. D.
,
2016
, “
Measuring Similarity Similarly: LDA and Human Perception
,”
ACM Trans. Intell. Syst. Technol.
,
8
(
1
), pp.
1
28
.
31.
Ellis
,
D.
,
Whitman
,
B.
,
Berenzweig
,
A.
, and
Lawrence
,
S.
,
2002
, “
The Quest for Ground Truth in Musical Artist Similarity
,”
Proceedings of the 3rd International Conference on Music Information Retrieval
,
Paris, France
,
Oct. 13–17
.
32.
Roads
,
B. D.
, and
Love
,
B. C.
,
2021
, “
Enriching ImageNet With Human Similarity Judgments and Psychological Embeddings
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Virtual
,
June 20–25
, pp.
3547
3557
.
33.
Gill
,
A. S.
,
Tsoka
,
A. N.
, and
Sen
,
C.
,
2019
, “
Dimensions of Product Similarity in Design by Analogy: An Exploratory Study
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
34.
McTeague
,
C. P.
,
Duffy
,
A.
,
Hay
,
L.
,
Vuletic
,
T.
,
Campbell
,
G.
,
Choo
,
P. L.
, and
Grealy
,
M.
,
2015
, “
Insights Into Design Concept Similarity Judgements
,”
15th International Design Conference
,
Milan, Italy
,
July 27–30
, pp.
2087
2098
.
35.
Hwang
,
D.
, and
Wood
,
K.
,
2020
, “
Assessing the Novelty of Design Outcomes: Using a Perceptual Kernel in a Crowd-Sourced Setting
,”
Ninth International Conference on Design Computing and Cognition
,
Atlanta, GA
,
Dec. 14–16
.
36.
Ahmed
,
F.
,
Ramachandran
,
S. K.
,
Fuge
,
M.
,
Hunter
,
S.
, and
Miller
,
S.
,
2019
, “
Interpreting Idea Maps: Pairwise Comparisons Reveal What Makes Ideas Novel
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021102
.
37.
Siangliulue
,
P.
,
Arnold
,
K. C.
,
Gajos
,
K. Z.
, and
Dow
,
S. P.
,
2015
, “
Toward Collaborative Ideation at Scale: Leveraging Ideas From Others to Generate More Creative and Diverse Ideas
,”
Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing
,
Vancouver, BC, Canada
,
Mar. 14–18
, ACM, pp.
937
945
.
38.
Vargas
,
S.
, and
Castells
,
P.
,
2011
, “
Rank and Relevance in Novelty and Diversity Metrics for Recommender Systems
,”
Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11
,
Chicago, IL
,
Oct. 23–27
, pp.
109
116
.
39.
Shah
,
J. J.
,
Smith
,
S. M.
, and
Vargas-Hernandez
,
N.
,
2003
, “
Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
24
(
2
), pp.
111
134
.
40.
Goucher-Lambert
,
K.
, and
Cagan
,
J.
,
2019
, “
Crowdsourcing Inspiration: Using Crowd Generated Inspirational Stimuli to Support Designer Ideation
,”
Des. Stud.
,
61
, pp.
1
29
.
41.
Srinivasan
,
V.
,
Song
,
B.
,
Luo
,
J.
,
Subburaj
,
K.
,
Elara
,
M. R.
,
Blessing
,
L.
, and
Wood
,
K.
,
2018
, “
Does Analogical Distance Affect Performance of Ideation?
,”
ASME J. Mech. Des.
,
140
(
7
), p.
071101
.
42.
Chan
,
J.
,
Dow
,
S. P.
, and
Schunn
,
C. D.
,
2015
, “
Do the Best Design Ideas (Really) Come From Conceptually Distant Sources of Inspiration?
,”
Des. Stud.
,
36
, pp.
31
58
.
43.
Fu
,
K.
,
Chan
,
J.
,
Cagan
,
J.
,
Kotovsky
,
K.
,
Schunn
,
C.
, and
Wood
,
K.
,
2013
, “
The Meaning of “Near” and “Far”: The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021007
.
44.
Goel
,
V.
,
1995
,
Sketches of Thought
,
MIT Press
,
Cambridge, MA
, pp.
95
126
.
46.
Tamuz
,
O.
,
Liu
,
C.
,
Belongie
,
S.
,
Shamir
,
O.
, and
Kalai
,
A. T.
,
2011
, “
Adaptively Learning the Crowd Kernel
,”
Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML’11
,
Bellevue, WA
,
June 28–July 2
, pp.
673
680
.
47.
Agarwal
,
S.
,
Wills
,
J.
,
Cayton
,
L.
,
Lanckriet
,
G.
,
Kriegman
,
D.
, and
Belongie
,
S.
,
2007
, “
Generalized Non-Metric Multidimensional Scaling
,”
Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics
,
San Juan, Puerto Rico
,
Mar. 11
, pp.
11
18
.
48.
van der Maaten
,
L.
, and
Weinberger
,
K.
,
2012
, “
Stochastic Triplet Embedding
,”
2012 IEEE International Workshop on Machine Learning for Signal Processing
,
Santander, Spain
,
Sept. 23–26
, IEEE, pp.
1
6
.
49.
Wills
,
P.
, and
Meyer
,
F. G.
,
2020
, “
Metrics for Graph Comparison: A Practitioner’s Guide
,”
PLoS One
,
15
(
2
), p.
e0228728
.
50.
Berlingerio
,
M.
,
Koutra
,
D.
,
Eliassi-Rad
,
T.
, and
Faloutsos
,
C.
,
2013
, “
Network Similarity Via Multiple Social Theories
,”
Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
,
Niagara, ON, Canada
,
Aug. 25–28
, pp.
1439
1440
.
51.
Koutra
,
D.
,
Vogelstein
,
J. T.
, and
Faloutsos
,
C.
,
2013
, “
Deltacon: A Principled Massive-Graph Similarity Function
,”
Proceedings of the 2013 SIAM International Conference on Data Mining
,
Austin, TX
,
May 2–4
, SIAM, pp.
162
170
.
52.
Hagberg
,
A. A.
,
Schult
,
D. A.
, and
Swart
,
P. J.
,
2008
, “
Exploring Network Structure, Dynamics, and Function Using NetworkX
,”
Proceedings of the 7th Python in Science Conference
,
Pasadena, CA
,
Aug. 19–24
, pp.
11
16
.
53.
Kriegeskorte
,
N.
,
Mur
,
M.
, and
Bandettini
,
P.
,
2008
, “
Representational Similarity Analysis—Connecting the Branches of Systems Neuroscience
,”
Front. Syst. Neurosci.
,
2
, p.
4
.
54.
Wang
,
Y.
,
Wang
,
L.
,
Li
,
Y.
,
He
,
D.
,
Liu
,
T.-Y.
, and
Chen
,
W.
,
2013
, “
A Theoretical Analysis of NDCG Type Ranking Measures
,”
Proceedings of the 26th Annual Conference on Learning Theory (COLT 2013)
,
Princeton, NJ
,
June 12–14
.
55.
Chaudhari
,
A. M.
,
Bilionis
,
I.
, and
Panchal
,
J. H.
,
2019
, “
Similarity in Engineering Design: A Knowledge-Based Approach
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
56.
Hay
,
L.
,
Duffy
,
A. H. B.
,
McTeague
,
C.
,
Pidgeon
,
L. M.
,
Vuletic
,
T.
, and
Grealy
,
M.
,
2017
, “
A Systematic Review of Protocol Studies on Conceptual Design Cognition: Design as Search and Exploration
,”
Des. Sci.
,
3
, p.
e10
.
57.
Camburn
,
B.
,
He
,
Y.
,
Raviselvam
,
S.
,
Luo
,
J.
, and
Wood
,
K.
,
2020
, “
Machine Learning-Based Design Concept Evaluation
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031113
.
58.
Nandy
,
A.
, and
Goucher-Lambert
,
K.
,
2021
, “
Aligning Human and Computational Evaluations of Functional Design Similarity
,”
ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
,
Aug. 17–19
.
You do not currently have access to this content.