Abstract

This paper presents a gravity-balancing method for a two-degree-of-freedom (2-DoF) parallel robotic platform with variable payloads. The robotic platform is constructed with a parallelogram-based five-bar parallel mechanism, and it is gravity balanced by adopting a pair of gear-spring units (GSUs). Each GSU is formed by a geared seven-link mechanism with a tension spring. The parameters of the GSUs are realized from an analytical solution for approximate gravity balancing. The significance of the proposed method is that it can work with a range of payloads via energy-free adjustment and enables a choice in spring stiffness. In this paper, theoretical and practical models are provided to demonstrate the effectiveness of the proposed method. The simulation results showed that the actuator torque of a robotic platform with different payloads could be reduced by 98.2% with gravity balancing. Experimental tests with a prototype were conducted in which the measured driving force of the robotic platform along a trajectory showed a reduction of 87.1%.

References

1.
Brossog
,
M.
,
Bornschlegl
,
M.
, and
Franke
,
J.
,
2015
, “
Reducing the Energy Consumption of Industrial Robots in Manufacturing Systems
,”
Int. J. Adv. Manuf. Technol.
,
78
(
5–8
), pp.
1315
1328
.
2.
Kuo
,
C.-H.
,
Nguyen
,
V. L.
,
Robertson
,
D.
,
Chou
,
L.-T.
, and
Herder
,
J. L.
,
2021
, “
Statically Balancing a Reconfigurable Mechanism by Using One Passive Energy Element Only: A Case Study
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
040904
.
3.
Arakelian
,
V.
,
2016
, “
Gravity Compensation in Robotics
,”
Adv. Rob.
,
30
(
2
), pp.
79
96
.
4.
Carricato
,
M.
, and
Gosselin
,
C.
,
2009
, “
A Statically Balanced Gough/Stewart-Type Platform: Conception, Design, and Simulation
,”
ASME J. Mech. Rob.
,
1
(
3
), p.
031005
.
5.
Zhou
,
L.
,
Chen
,
W.
,
Chen
,
W.
,
Bai
,
S.
,
Zhang
,
J.
, and
Wang
,
J.
,
2020
, “
Design of a Passive Lower Limb Exoskeleton for Walking Assistance With Gravity Compensation
,”
Mech. Mach. Theory
,
150
, p.
103840
.
6.
Herder
,
J. L.
,
2001
, “
Energy-Free Systems: Theory, Conception and Design of Statically Balanced Spring Mechanisms
,”
PhD Thesis
,
Delft University of Technology
,
Delft, The Netherlands
.
7.
Van der Wijk
,
V.
,
2017
, “
Design and Analysis of Closed-Chain Principal Vector Linkages for Dynamic Balance With a New Method for Mass Equivalent Modeling
,”
Mech. Mach. Theory
,
107
, pp.
283
304
.
8.
Audet
,
J. M.
, and
Gosselin
,
C.
,
2021
, “
Rotational Low-Impedance Physical Human–Robot Interaction Using Underactuated Redundancy
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
014503
.
9.
Audet
,
J. M.
, and
Gosselin
,
C.
,
2022
, “
Intuitive Physical Human–Robot Interaction Using an Underactuated Redundant Manipulator With Complete Spatial Rotational Capabilities
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011011
.
10.
van der Wijk
,
V.
,
2020
, “
The Grand 4R Four-Bar Based Inherently Balanced Linkage Architecture for Synthesis of Shaking Force Balanced and Gravity Force Balanced Mechanisms
,”
Mech. Mach. Theory
,
150
, p.
103815
.
11.
Fedorov
,
D.
, and
Birglen
,
L.
,
2018
, “
Differential Noncircular Pulleys for Cable Robots and Static Balancing
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061001
.
12.
Kuo
,
C.-H.
, and
Lai
,
S.-J.
,
2016
, “
Design of a Novel Statically Balanced Mechanism for Laparoscope Holders With Decoupled Positioning and Orientating Manipulation
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
015001
.
13.
Franco
,
J. A.
,
Gallego
,
J. A.
, and
Herder
,
J. L.
,
2021
, “
Static Balancing of Four-Bar Compliant Mechanisms With Torsion Springs by Exerting Negative Stiffness Using Linear Spring at the Instant Center of Rotation
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031010
.
14.
Wang
,
J.
, and
Kong
,
X.
,
2019
, “
A Geometric Approach to the Static Balancing of Mechanisms Constructed Using Spherical Kinematic Chain Units
,”
Mech. Mach. Theory
,
140
, pp.
305
320
.
15.
Lin
,
P.-Y.
,
Shieh
,
W.-B.
, and
Chen
,
D.-Z.
,
2012
, “
Design of Statically Balanced Planar Articulated Manipulators With Spring Suspension
,”
IEEE Trans. Rob.
,
28
(
1
), pp.
12
21
.
16.
Alamdari
,
A.
,
Haghighi
,
R.
, and
Krovi
,
V.
,
2019
, “
Gravity-Balancing of Elastic Articulated-Cable Leg-Orthosis Emulator
,”
Mech. Mach. Theory
,
131
, pp.
351
370
.
17.
Arakelian
,
V.
, and
Zhang
,
Y.
,
2019
, “
An Improved Design of Gravity Compensators Based on the Inverted Slider-Crank Mechanism
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
034501
.
18.
Lee
,
W.-B.
,
Lee
,
S.-D.
, and
Song
,
J.-B.
,
2017
, “
Design of a 6-DOF Collaborative Robot Arm With Counterbalance Mechanisms
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
3696
3701
.
19.
Ahn
,
K.-H.
,
Lee
,
W.-B.
, and
Song
,
J.-B.
,
2016
, “
Reduction in Gravitational Torques of an Industrial Robot Equipped With 2 DOF Passive Counterbalance Mechanisms
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
4344
4349
.
20.
Lee
,
D.
, and
Seo
,
T.
,
2017
, “
Lightweight Multi-DOF Manipulator With Wire-Driven Gravity Compensation Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
22
(
3
), pp.
1308
1314
.
21.
Min
,
J.-K.
,
Kim
,
D.-W.
, and
Song
,
J.-B.
,
2020
, “
A Wall-Mounted Robot Arm Equipped With a 4-DOF Yaw-Pitch-Yaw-Pitch Counterbalance Mechanism
,”
IEEE Robot. Autom. Lett.
,
5
(
3
), pp.
3768
3774
.
22.
Jamshidifar
,
H.
,
Khajepour
,
A.
,
Sun
,
T.
,
Schmitz
,
N.
,
Jalali
,
S.
,
Topor-Gosman
,
R.
, and
Dong
,
J.
,
2021
, “
A Novel Mechanism for Gravity-Balancing of Serial Robots With High-Dexterity Applications
,”
IEEE Trans. Med. Rob. Bionics
,
3
(
3
), pp.
750
761
.
23.
Kim
,
H.-S.
, and
Song
,
J.-B.
,
2014
, “
Multi-DOF Counterbalance Mechanism for a Service Robot Arm
,”
IEEE/ASME Trans. Mechatron.
,
19
(
6
), pp.
1756
1763
.
24.
Ulrich
,
N.
, and
Kumar
,
V.
,
1991
, “
Passive Mechanical Gravity Compensation for Robot Manipulators
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Sacramento, CA
,
Apr. 9–11
, pp.
1536
1541
.
25.
Koser
,
K.
,
2009
, “
A Cam Mechanism for Gravity-Balancing
,”
Mech. Res. Commun.
,
36
(
4
), pp.
523
530
.
26.
Nguyen
,
V. L.
,
Lin
,
C.-Y.
, and
Kuo
,
C.-H.
,
2020
, “
Gravity Compensation Design of Planar Articulated Robotic Arms Using the Gear-Spring Modules
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031014
.
27.
Kim
,
H.-S.
,
Min
,
J.-K.
, and
Song
,
J.-B.
,
2016
, “
Multiple-Degree-of-Freedom Counterbalance Robot Arm Based on Slider-Crank Mechanism and Bevel Gear Units
,”
IEEE Trans. Rob.
,
32
(
1
), pp.
230
235
.
28.
Gosselin
,
C.
,
2008
, “Gravity Compensation, Static Balancing and Dynamic Balancing of Parallel Mechanisms,”
Smart Devices and Machines for Advanced Manufacturing
,
L.
Wang
and
J.
Xi
, eds.,
Springer-Verlag London Limited
,
London
, pp.
27
48
.
29.
Wang
,
J.
, and
Gosselin
,
C. M.
,
1999
, “
Static Balancing of Spatial Three-Degree-of-Freedom Parallel Mechanisms
,”
Mech. Mach. Theory
,
34
(
3
), pp.
437
452
.
30.
Wang
,
J.
, and
Gosselin
,
C. M.
,
2000
, “
Static Balancing of Spatial Four-Degree-of-Freedom Parallel Mechanisms
,”
Mech. Mach. Theory
,
35
(
4
), pp.
563
592
.
31.
Gosselin
,
C. M.
, and
Wang
,
J.
,
1998
, “
On the Design of Gravity-Compensated Six-Degree-of-Freedom Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Leuven, Belgium
,
May 20
, pp.
2287
2294
.
32.
Lian
,
B.
,
Sun
,
T.
,
Song
,
Y.
, and
Wang
,
X.
,
2016
, “
Passive and Active Gravity Compensation of Horizontally-Mounted 3-RPS Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
104
, pp.
190
201
.
33.
Nguyen
,
V. L.
,
Lin
,
C.-Y.
, and
Kuo
,
C.-H.
,
2020
, “
Gravity Compensation Design of Delta Parallel Robots Using Gear-Spring Modules
,”
Mech. Mach. Theory
,
154
, p.
104046
.
34.
Martini
,
A.
,
2018
, “
Gravity Compensation of a 6-UPS Parallel Kinematics Machine Tool Through Elastically Balanced Constant-Force Generators
,”
FME Trans.
,
46
(
1
), pp.
10
16
.
35.
Simionescu
,
I.
,
Ciupitu
,
L.
, and
Ionita
,
L. C.
,
2015
, “
Static Balancing With Elastic Systems of DELTA Parallel Robots
,”
Mech. Mach. Theory
,
87
, pp.
150
162
.
36.
Martini
,
A.
,
Troncossi
,
M.
,
Carricato
,
M.
, and
Rivola
,
A.
,
2015
, “
Static Balancing of a Parallel Kinematics Machine With Linear-Delta Architecture: Theory, Design and Numerical Investigation
,”
Mech. Mach. Theory
,
90
, pp.
128
141
.
37.
Barajas
,
J. C.
, and
Paz
,
R. A.
,
2016
, “
Autobalancing a Generalized Gravity Equilibrator
,”
Int. J. Dyn. Control
,
4
(
4
), pp.
515
526
.
38.
Briot
,
S.
, and
Arakelian
,
V.
,
2015
, “
A New Energy-Free Gravity-Compensation Adaptive System for Balancing of 4-DOF Robot Manipulators With Variable Payloads
,”
Proceedings of the 14th IFToMM World Congress
,
Taipei, Taiwan
,
Oct. 25–30
, pp.
179
187
.
39.
Kim
,
J.
,
Moon
,
J.
,
Kim
,
J.
, and
Lee
,
G.
,
2020
, “
Compact Variable Gravity Compensation Mechanism With a Geometrically Optimized Lever for Maximizing Variable Ratio of Torque Generation
,”
IEEE/ASME Trans. Mechatron.
,
25
(
4
), pp.
2019
2026
.
40.
Kim
,
J.
,
Moon
,
J.
,
Ryu
,
J.
, and
Lee
,
G.
,
2021
, “
CVGC-II: A New Version of a Compact Variable Gravity Compensator (CVGC) With a Wider Range of Variable Torque and Energy-Free Variable Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
27
(
2
), pp.
678
689
.
41.
Chew
,
D. X.
,
Wood
,
K. L.
, and
Tan
,
U.
,
2019
, “
Design of a Passive Self-Regulating Gravity Compensator for Variable Payloads
,”
ASME J. Mech. Des.
,
141
(
10
), p.
102302
.
42.
Van Dorsser
,
W.
,
Barents
,
R.
,
Wisse
,
B.
,
Schenk
,
M.
, and
Herder
,
J.
,
2008
, “
Energy-Free Adjustment of Gravity Equilibrators by Adjusting the Spring Stiffness
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
222
(
9
), pp.
1839
1846
.
43.
Takesue
,
N.
,
Ikematsu
,
T.
,
Murayama
,
H.
, and
Fujimoto
,
H.
,
2011
, “
Design and Prototype of Variable Gravity Compensation Mechanism (VGCM)
,”
J. Rob. Mechatron.
,
23
(
2
), pp.
249
257
.
44.
Yang
,
Z.-W.
, and
Lan
,
C.-C.
,
2015
, “
An Adjustable Gravity-Balancing Mechanism Using Planar Extension and Compression Springs
,”
Mech. Mach. Theory
,
92
, pp.
314
329
.
45.
Van Dorsser
,
W. D.
,
Barents
,
R.
,
Wisse
,
B. M.
, and
Herder
,
J. L.
,
2007
, “
Gravity-Balancing Arm Support With Energy-Free Adjustment
,”
ASME J. Med. Dev.
,
1
(
2
), pp.
151
158
.
46.
Chu
,
Y.-L.
, and
Kuo
,
C.-H.
,
2017
, “
A Single-Degree-of-Freedom Self-Regulated Gravity Balancer for Adjustable Payload
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021006
.
47.
Tsai
,
L.-W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
John Wiley & Sons
,
New York, NY
.
48.
Nguyen
,
V. L.
,
2021
, “
Gravity-Balancing Design of a 3-DOF Hybrid Robotic Manipulator With Variable Payloads
,”
ASME International Mechanical Engineering Congress and Exposition (IMECE)
,
Virtual, Online
,
Nov. 1–5
, Paper No. IMECE2021-69857.
49.
Budynas
,
R. G.
, and
Nisbett
,
J. K.
,
2011
,
Shigley’s Mechanical Engineering Design
, 9th ed.,
The McGraw-Hill Companies, Inc.
,
New York
.
50.
Tao
,
B.
,
Zhao
,
X.
, and
Ding
,
H.
,
2019
, “
Mobile-Robotic Machining for Large Complex Components: A Review Study
,”
Sci. China: Technol. Sci.
,
62
(
8
), pp.
1388
1400
.
51.
Zhu
,
Z.
,
Tang
,
X.
,
Chen
,
C.
,
Peng
,
F.
,
Yan
,
R.
,
Zhou
,
L.
,
Li
,
Z.
, and
Wu
,
J.
,
2021
, “
High Precision and Efficiency Robotic Milling of Complex Parts: Challenges, Approaches and Trends
,”
Chin. J. Aeronaut.
,
35
(
2
), pp.
22
46
.
52.
Wang
,
Q.
,
Wang
,
W.
,
Ding
,
X.
, and
Yun
,
C.
,
2019
, “
A Force Control Joint for Robot–Environment Contact Application
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
034502
.
You do not currently have access to this content.