Abstract

Conceptual design evaluation is an indispensable component of innovation in the early stage of engineering design. Properly assessing the effectiveness of conceptual design requires a rigorous evaluation of the outputs. Traditional methods to evaluate conceptual designs are slow, expensive, and difficult to scale because they rely on human expert input. An alternative approach is to use computational methods to evaluate design concepts. However, most existing methods have limited utility because they are constrained to unimodal design representations (e.g., texts or sketches). To overcome these limitations, we propose an attention-enhanced multimodal learning (AEMML)-based machine learning (ML) model to predict five design metrics: drawing quality, uniqueness, elegance, usefulness, and creativity. The proposed model utilizes knowledge from large external datasets through transfer learning (TL), simultaneously processes text and sketch data from early-phase concepts, and effectively fuses the multimodal information through a mutual cross-attention mechanism. To study the efficacy of multimodal learning (MML) and attention-based information fusion, we compare (1) a baseline MML model and the unimodal models and (2) the attention-enhanced models with baseline models in terms of their explanatory power for the variability of the design metrics. The results show that MML improves the model explanatory power by 0.05–0.12 and the mutual cross-attention mechanism further increases the explanatory power of the approach by 0.05–0.09, leading to the highest explanatory power of 0.44 for drawing quality, 0.60 for uniqueness, 0.45 for elegance, 0.43 for usefulness, and 0.32 for creativity. Our findings highlight the benefit of using multimodal representations for design metric assessment.

References

1.
Hammedi
,
W.
,
Van Riel
,
A. C.
, and
Sasovova
,
Z.
,
2011
, “
Antecedents and Consequences of Reflexivity in New Product Idea Screening*
,”
J. Product Innov. Manage.
,
28
(
5
), pp.
662
679
.
2.
Miller
,
S. R.
,
Hunter
,
S. T.
,
Starkey
,
E.
,
Ramachandran
,
S.
,
Ahmed
,
F.
, and
Fuge
,
M.
,
2021
, “
How Should We Measure Creativity in Engineering Design? A Comparison Between Social Science and Engineering Approaches
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031404
.
3.
Starkey
,
E. M.
,
Menold
,
J.
, and
Miller
,
S. R.
,
2019
, “
When Are Designers Willing to Take Risks? How Concept Creativity and Prototype Fidelity Influence Perceived Risk
,”
ASME J. Mech. Des.
,
141
(
3
), p.
031104
.
4.
Cer
,
D.
,
Yang
,
Y.
,
Kong
,
S.-Y.
,
Hua
,
N.
,
Limtiaco
,
N.
,
St John
,
R.
,
Constant
,
N.
,
Guajardo-Céspedes
,
M.
,
Yuan
,
S.
,
Tar
,
C.
,
Sung
,
Y.-H.
,
Strope
,
B.
, and
Kurzweil Google Research Mountain View, R
,
2018
, “
Universal Sentence Encoder
,”
AAAI
, pp.
16026
16028
.
5.
Sarkar
,
P.
, and
Chakrabarti
,
A.
,
2014
, “
Ideas Generated in Conceptual Design and Their Effects on Creativity
,”
Res. Eng. Des.
,
25
(
3
), pp.
185
201
.
6.
Amabile
,
T. M.
,
1996
,
Creativity in Context: Update to the Social Psychology of Creativity
,
Routledge
,
New York
.
7.
Sarkar
,
P.
, and
Chakrabarti
,
A.
,
2011
, “
Assessing Design Creativity
,”
Des. Stud.
,
32
(
4
), pp.
1
36
.
8.
Shah
,
J. J.
,
Vargas-Hernandez
,
N.
, and
Smith
,
S. M.
,
2003
, “
Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
24
(
2
), pp.
111
134
.
9.
Baer
,
J.
, and
Kaufman
,
J. C.
,
2018
,
The Palgrave Handbook of Social Creativity Research
,
Palgrave Macmillan
,
Cham
, pp.
27
37
.
10.
Amabile
,
T. M.
,
1982
, “
Social Psychology of Creativity: A Consensual Assessment Technique
,”
J. Personal. Soc. Psychol.
,
43
(
5
), pp.
997
1013
.
11.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K.-H. H.
,
2007
,
Engineering Design: A Systematic Approach
,
Springer
,
London
.
12.
Oman
,
S. K.
,
Tumer
,
I. Y.
,
Wood
,
K.
, and
Seepersad
,
C.
,
2013
, “
A Comparison of Creativity and Innovation Metrics and Sample Validation Through In-Class Design Projects
,”
Res. Eng. Des.
,
24
(
1
), pp.
65
92
.
13.
Ling
,
G.
,
Mollaun
,
P.
, and
Xi
,
X.
,
2014
, “
A Study on the Impact of Fatigue on Human Raters When Scoring Speaking Responses
,”
Lang. Test.
,
31
(
4
), pp.
479
499
.
14.
Chaudhuri
,
N. B.
,
Dhar
,
D.
, and
Yammiyavar
,
P. G.
,
2020
, “
A Computational Model for Subjective Evaluation of Novelty in Descriptive Aptitude
,”
Int. J. Technol. Des. Edu.
,
32
, pp.
1
38
.
15.
Ahmed
,
F.
,
Ramachandran
,
S. K.
,
Fuge
,
M.
,
Hunter
,
S.
, and
Miller
,
S.
,
2019
, “
Interpreting Idea Maps: Pairwise Comparisons Reveal What Makes Ideas Novel
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021102
.
16.
Ahmed
,
F.
,
Fuge
,
M.
,
Hunter
,
S.
, and
Miller
,
S.
,
2018
, “
Unpacking Subjective Creativity Ratings: Using Embeddings to Explain and Measure Idea Novelty
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
.
17.
Ahmed
,
F.
, and
Fuge
,
M.
,
2017
, “
Capturing Winning Ideas in Online Design Communities
,”
2017 ACM Conference on Computer Supported Cooperative Work and Social Computing
,
Portland, OR
,
Feb. 25–Mar. 1
, pp.
1675
1687
.
18.
Zhang
,
C.
,
Yang
,
Z.
,
He
,
X.
, and
Deng
,
L.
,
2019
, “
Multimodal Intelligence: Representation Learning, Information Fusion, and Applications
,”
IEEE J. Select. Top. Signal Process.
,
14
(
3
), pp.
478
493
.
19.
Zhuang
,
F.
,
Qi
,
Z.
,
Duan
,
K.
,
Xi
,
D.
,
Zhu
,
Y.
,
Zhu
,
H.
,
Xiong
,
H.
, and
He
,
Q.
,
2021
, “
A Comprehensive Survey on Transfer Learning
,”
Proc. IEEE
,
109
(
1
), pp.
43
76
.
20.
Jeffries
,
K. K.
,
2012
, “
Amabile’s Consensual Assessment Technique: Why Has It Not Been Used More in Design Creativity Research?
2nd International Conference on Design Creativity
,
Glasgow, UK
,
Sept. 18–20
, pp.
211
220
.
21.
Han
,
J.
,
Forbes
,
H.
, and
Schaefer
,
D.
,
2019
, “
An Exploration of the Relations Between Functionality, Aesthetics and Creativity in Design
,”
International Conference on Engineering Design
,
Delft, The Netherlands
,
Aug. 5–8
, vol. 1 (1), pp.
259
268
.
22.
Weaver
,
M. B.
,
Caldwell
,
B. W.
, and
Sheafer
,
V.
,
2019
, “
Interpreting Measures of Rarity and Novelty: Investigating Correlations Between Relative Infrequency and Perceived Ratings
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 7
,
Anaheim, CA
,
Aug. 18–21
.
23.
Edwards
,
K.
,
Miller
,
S. R.
, and
Ahmed
,
F.
,
2022
, “
If a Picture Is Worth 1000 Words, Is a Word Worth 1000 Features For
,”
ASME J. Mech. Des
,
144
(
4
), p.
041402
.
24.
Sluis-Thiescheffer
,
W.
,
Bekker
,
T.
,
Eggen
,
B.
,
Vermeeren
,
A.
, and
De Ridder
,
H.
,
2016
, “
Measuring and Comparing Novelty for Design Solutions Generated by Young Children Through Different Design Methods
,”
Des. Stud.
,
43
, pp.
48
73
.
25.
Fiorineschi
,
L.
,
Frillici
,
F. S.
, and
Rotini
,
F.
,
2018
, “
Issues Related to Missing Attributes in Aposteriori Novelty Assessments
,”
DESIGN Conference
,
Dubrovnik, Croatia
,
May 21–24
, Vol. 3, pp.
1067
1078
.
26.
Johnson
,
T. A.
,
Cheeley
,
A.
,
Caldwell
,
B. W.
, and
Green
,
M. G.
,
2016
, “
Comparison and Extension of Novelty Metrics for Problem-Solving Tasks
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
.
27.
Sarkar
,
P.
, and
Chakrabarti
,
A.
,
2007
, “
Development of a Method for Assessing Design Creativity
,”
DS 42: Proceedings of ICED 2007, the 16th International Conference on Engineering Design, Paris, France, July 28–31
, pp.
349
350
.
28.
Srinivasan
,
V.
, and
Chakrabarti
,
A.
,
2010
, “
Investigating Novelty–Outcome Relationships in Engineering Design
,”
AI EDAM
,
24
(
2
), pp.
161
178
.
29.
Siddharth
,
L.
, and
Sarkar
,
P.
,
2018
, “
A Multiple-Domain Matrix Support to Capture Rationale for Engineering Design Changes
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
2
), p.
021014
.
30.
Brown
,
D. C.
, and
Gero
,
J.
,
2014
, “
Problems With the Calculation of Novelty Metrics
,”
Sixth International Conference on Design Computing and Cognition
,
London, UK
,
June 23–25
,
J.
Gero
, ed., Springer, pp.
1
9
.
31.
Speer
,
R.
, and
Havasi
,
C.
,
2012
, “
Representing General Relational Knowledge in ConceptNet 5
,”
Eighth International Conference on Language Resources and Evaluation
,
Istanbul, Turkey
,
May 23–25
, pp.
3679
3686
.
32.
Sarica
,
S.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2020
, “
Technet: Technology Semantic Network Based on Patent Data
,”
Exp. Syst. Appl.
,
142
, p.
112995
.
33.
Sarica
,
S.
,
Song
,
B.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2019
, “
Technology Knowledge Graph for Design Exploration: Application to Designing the Future of Flying Cars
,”
ASME 2019 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
34.
Han
,
J.
,
Forbes
,
H.
,
Shi
,
F.
,
Hao
,
J.
, and
Schaefer
,
D.
,
2020
, “
A Data-Driven Approach for Creative Concept Generation and Evaluation
,”
DESIGN Conference
,
Virtual
,
Oct. 26–29
, Vol. 1, pp.
167
176
.
35.
Luo
,
J.
,
Sarica
,
S.
, and
Wood
,
K. L.
,
2021
, “
Guiding Data-Driven Design Ideation by Knowledge Distance
,”
Knowl. Based Syst.
,
218
, p.
106873
.
36.
LeCun
,
Y.
,
Bottou
,
L.
,
Bengio
,
Y.
, and
Haffner
,
P.
,
1998
, “
Gradient-Based Learning Applied to Document Recognition
,”
Proc. IEEE
,
86
(
11
), pp.
2278
2323
.
37.
Xu
,
P.
,
Hospedales
,
T. M.
,
Yin
,
Q.
,
Song
,
Y.-Z.
,
Xiang
,
T.
, and
Wang
,
L.
,
2022
, “
Deep Learning for Free-Hand Sketch: A Survey
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
45
(
1
), pp.
285
312
.
38.
Seddati
,
O.
,
Dupont
,
S.
, and
Mahmoudi
,
S.
,
2015
, “
DeepSketch: Deep Convolutional Neural Networks for Sketch Recognition and Similarity Search
,”
2015 13th International Workshop on Content-Based Multimedia Indexing
,
Prague, Czech Republic
,
June 10–12
.
39.
Lu
,
W.
, and
Report
,
E. T.
,
2017
, “
Free-Hand Sketch Recognition Classification
,”
Tech. Rep., Stanford University.
40.
Jahan
,
N.
,
Nesa
,
A.
, and
Layek
,
M. A.
,
2021
, “
Parkinson’s Disease Detection Using CNN Architectures With Transfer Learning
,”
2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems
,
Chennai, India
,
Sept. 24–25
, pp.
1
5
.
41.
Yu
,
Q.
,
Yang
,
Y.
,
Liu
,
F.
,
Song
,
Y.-Z.
,
Xiang
,
T.
, and
Hospedales
,
T. M.
,
2016
, “
Sketch-a-Net: A Deep Neural Network That Beats Humans
,”
Int. J. Comput. Vis.
,
122
(
3
), pp.
411
425
.
42.
Zhang
,
X.
,
Huang
,
Y.
,
Zou
,
Q.
,
Pei
,
Y.
,
Zhang
,
R.
, and
Wang
,
S.
,
2020
, “
A Hybrid Convolutional Neural Network for Sketch RRecognition
,”
Pattern Recogn. Lett.
,
130
, pp.
73
82
.
43.
Zhang
,
L.
,
2021
, “
Hand-Drawn Sketch Recognition With a Double-Channel Convolutional Neural Network
,”
EURASIP J. Adv. Signal Process.
,
2021
(
1
), pp.
1
12
.
44.
Ha
,
D.
, and
Eck
,
D.
,
2017
, “
A Neural Representation of Sketch Drawings
,”
6th International Conference on Learning Representations
,
Vancouver, BC, Canada
,
Apr. 30–May 3
.
45.
Yang
,
L.
,
Wei
,
X.
,
Tong
,
S. J.
,
Zhou
,
K.
,
Zheng
,
Y.
,
Zhuang
,
J.
, and
Fu
,
H.
,
2021
, “
SketchGNN: Semantic Sketch Segmentation With Graph Neural Networks
,”
ACM Trans. Graph.
,
37
(
111
), p.
2021
.
46.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
L.
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need
,”
31st Conference on Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
, pp.
5999
6009
.
47.
Mikolov
,
T.
,
Chen
,
K.
,
Corrado
,
G. S.
,
Dean
,
J.
,
Sutskever
,
I.
,
Chen
,
K.
,
Corrado
,
G. S.
, and
Dean
,
J.
,
2013
, “
Distributed Representations of Words and Phrases and Their Compositionality
,”
Adv. Neural Inf. Process. Syst.
,
2
, pp.
1
9
.
48.
Pennington
,
J.
,
Socher
,
R.
, and
Manning
,
C. D.
,
2014
, “
GloVe: Global Vectors for Word Representation
,”
2014 Conference on Empirical Methods in Natural Language Processing
,
Doha, Qatar
,
Oct. 25–29
, pp.
1532
1543
.
49.
Peters
,
M. E.
,
Neumann
,
M.
,
Iyyer
,
M.
,
Gardner
,
M.
,
Clark
,
C.
,
Lee
,
K.
, and
Zettlemoyer
,
L.
,
2018
, “
Deep Contextualized Word Representations
,”
2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
,
New Orleans, LA
,
June 1–6
, Vol. 1, pp.
2227
2237
.
50.
Devlin
,
J.
,
Chang
,
M.-W. W.
,
Lee
,
K.
, and
Toutanova
,
K.
,
2019
, “
BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding
,”
2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
,
Minneapolis, MN
,
June 2–7
, pp.
4171
4186
.
51.
Zan
,
Z.
,
Li
,
L.
,
Liu
,
J.
, and
Zhou
,
D.
,
2020
, “
Sentence-Based and Noise-Robust Cross-Modal Retrieval on Cooking Recipes and Food Images
,”
2020 International Conference on Multimedia Retrieval
,
Dublin, Ireland
,
Oct. 26–29
, Vol. 20, pp.
117
125
.
52.
Pan
,
S. J.
, and
Yang
,
Q.
,
2010
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
22
(
10
), pp.
1345
1359
.
53.
Wang
,
Z.
,
Dai
,
Z.
,
Poczos
,
B.
, and
Carbonell
,
J.
,
2019
, “
Characterizing and Avoiding Negative Transfer
,”
IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 15–20
.
54.
Whalen
,
E.
, and
Mueller
,
C.
,
2022
, “
Toward Reusable Surrogate Models: Graph-Based Transfer Learning on Trusses
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021704
.
55.
Cheng
,
M. Y.
,
Gupta
,
A.
,
Ong
,
Y. S.
, and
Ni
,
Z. W.
,
2017
, “
Coevolutionary Multitasking for Concurrent Global Optimization: With Case Studies in Complex Engineering Design
,”
Eng. Appl. Artif. Intell.
,
64
, pp.
13
24
.
56.
Pandita
,
P.
,
Ghosh
,
S.
,
Gupta
,
V. K.
,
Meshkov
,
A.
, and
Wang
,
L.
,
2022
, “
Application of Deep Transfer Learning and Uncertainty Quantification for Process Identification in Powder Bed Fusion
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng.
,
8
(
1
), p.
011106
.
57.
Huang
,
X.
,
Hu
,
Z.
,
Xie
,
T.
,
Wang
,
Z.
,
Chen
,
L.
, and
Zhou
,
Q.
,
2021
, “
Point-Cloud Neural Network Using Transfer Learning-Based Multi-Fidelity Method for Thermal Field Prediction in Additive Manufacturing
,”
ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
,
Aug. 17–19
.
58.
Nojavanasghari
,
B.
,
Gopinath
,
D.
,
Koushik
,
J.
,
Baltrušaitis
,
T.
, and
Morency
,
L. P.
,
2016
, “
Deep Multimodal Fusion for Persuasiveness Prediction
,”
18th ACM International Conference on Multimodal Interaction
,
Tokyo, Japan
,
Nov. 12–16
, pp.
284
288
.
59.
Anastasopoulos
,
A.
,
Kumar
,
S.
, and
Liao
,
H.
,
2019
, “
Neural Language Modeling With Visual Features
,”
10.48550/arXiv.1903.02930
. https://arxiv.org/abs/1903.02930
60.
Vielzeuf
,
V.
,
Lechervy
,
A.
,
Pateux
,
S.
, and
Jurie
,
F.
, “
CentralNet: a Multilayer Approach for Multimodal Fusion
,”
Computer Vision – ECCV 2018 Workshops
,
Munich, Germany
,
Sept. 8–14
, Vol. 11134, LNCS, pp.
575
589
.
61.
Perez-Rua
,
J. M.
,
Vielzeuf
,
V.
,
Pateux
,
S.
,
Baccouche
,
M.
, and
Jurie
,
F.
,
2019
, “
MFAS: Multimodal Fusion Architecture Search
,”
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 15–20
, pp.
6959
6968
.
62.
Cui
,
C.
,
Yang
,
H.
,
Wang
,
Y.
,
Zhao
,
S.
,
Asad
,
Z.
,
Coburn
,
L. A.
,
Wilson
,
K. T.
,
Landman
,
B. A.
, and
Huo
,
Y.
,
2022
, “
Deep Multi-Modal Fusion of Image and Non-Image Data in Disease Diagnosis and Prognosis: A Review
,”
10.48550/arXiv.2203.15588
. https://arxiv.org/abs/2203.15588
63.
Bahdanau
,
D.
,
Cho
,
K.
, and
Bengio
,
Y.
,
2015
, “
Neural Machine Translation by Jointly Learning to Align and Translate
,”
3rd International Conference on Learning Representations
,
San Diego, CA
,
May 7–9
.
64.
Xu
,
K.
,
Ba
,
J.
,
Kiros
,
R.
,
Cho
,
K.
,
Courville
,
A.
,
Salakhudinov
,
R.
,
Zemel
,
R.
,
Bengio
,
Y.
,
Salakhutdinov
,
R.
,
Zemel
,
R.
, and
Bengio
,
Y.
,
2015
, “
Show, Attend and Tell: Neural Image Caption Generation With Visual Attention
,”
32nd International Conference on Machine Learning
,
Lille, France
,
July 6–11
.
65.
Tuan
,
N. M. D.
, and
Minh
,
P. Q. N.
,
2021
, “
Multimodal Fusion With Bert and Attention Mechanism for Fake News Detection
,”
2021 RIVF International Conference on Computing and Communication Technologies
,
Hanoi, Vietnam
,
Aug. 19–21
.
66.
Su
,
W.
,
Zhu
,
X.
,
Cao
,
Y.
,
Li
,
B.
,
Lu
,
L.
,
Wei
,
F.
, and
Dai
,
J.
,
2019
, “
VL-BERT: Pre-Training of Generic Visual-Linguistic Representations
,”
10.48550/arXiv.1908.08530
. https://arxiv.org/abs/1908.08530
67.
Tenenbaum
,
J. B.
, and
Freeman
,
W. T.
,
2000
, “
Separating Style and Content With Bilinear Models
,”
Neural Comput.
,
12
(
6
), pp.
1247
1283
.
68.
Parisot
,
S.
,
Ktena
,
S. I.
,
Ferrante
,
E.
,
Lee
,
M.
,
Guerrero
,
R.
,
Glocker
,
B.
, and
Rueckert
,
D.
,
2018
, “
Disease Prediction Using Graph Convolutional Networks: Application to Autism Spectrum Disorder and Alzheimer’s Disease
,”
Med. Image Anal.
,
48
, pp.
117
130
.
69.
Silberer
,
C.
, and
Lapata
,
M.
,
2014
, “
Learning Grounded Meaning Representations With Autoencoders
,”
52nd Annual Meeting of the Association for Computational Linguistics
,
Baltimore, MD
,
June 23–25
, Vol. 1, pp.
721
732
.
70.
Tsai
,
Y.-H. H.
,
Liang
,
P. P.
,
Zadeh
,
A.
,
Morency
,
L.-P.
, and
Salakhutdinov
,
R.
,
2019
, “
Learning Factorized Multimodal Representations
,”
7th International Conference on Learning Representations
,
New Orleans, LA
,
May 6–9
.
71.
Xu
,
T.
,
Zhang
,
P.
,
Huang
,
Q.
,
Zhang
,
H.
,
Gan
,
Z.
,
Huang
,
X.
, and
He
,
X.
,
2018
, “
AttnGAN: Fine-Grained Text to Image Generation With Attentional Generative Adversarial Networks
,”
IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–23
, pp.
1316
1324
.
72.
Yuan
,
C.
,
Marion
,
T.
, and
Moghaddam
,
M.
,
2022
, “
Leveraging End-User Data for Enhanced Design Concept Evaluation: A Multimodal Deep Regression Model
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021403
.
73.
Toh
,
C. A.
, and
Miller
,
S. R.
,
2016
, “
Creativity in Design Teams: The Influence of Personality Traits and Risk Attitudes on Creative Concept Selection
,”
Res. Eng. Des.
,
27
(
1
), pp.
73
89
.
74.
Zheng
,
X.
, and
Miller
,
S. R.
,
2019
, “
Is Ownership Bias Bad? The Influence of Idea Goodness and Creativity on Design Professionals Concept Selection Practices
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021106
.
75.
Song
,
B.
,
Miller
,
S.
, and
Ahmed
,
F.
,
2022
, “
Hey, AI! Can You See What I See? Multimodal Transfer Learning-Based Design Metrics Prediction for Sketches With Text Descriptions
,”
ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
.
76.
Liu
,
C. Z.
,
Sheng
,
Y. X.
,
Wei
,
Z. Q.
, and
Yang
,
Y. Q.
,
2018
, “
Research of Text Classification Based on Improved TF-IDF Algorithm
,”
2018 IEEE International Conference of Intelligent Robotic and Control Engineering
,
Lanzhou, China
,
Aug. 24–27
, pp.
69
73
.
77.
Szegedy
,
C.
,
Vanhoucke
,
V.
,
Ioffe
,
S.
,
Shlens
,
J.
, and
Wojna
,
Z.
,
2016
, “
Rethinking the Inception Architecture for Computer Vision
,”
IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 26–July 1
, pp.
2818
2826
.
78.
Wang
,
J.
,
Mao
,
H.
, and
Li
,
H.
,
2022
, “
FMFN: Fine-Grained Multimodal Fusion Networks for Fake News Detection
,”
Appl. Sci.
,
12
(
3
), p.
1093
.
79.
Du
,
C.
,
Li
,
T.
,
Liu
,
Y.
,
Wen
,
Z.
,
Hua
,
T.
,
Wang
,
Y.
, and
Zhao
,
H.
,
2021
, “
Improving Multi-Modal Learning With Uni-Modal Teachers
,”
10.48550/arXiv.2106.11059
. https://arxiv.org/abs/2106.11059
You do not currently have access to this content.