Abstract

Solving a multiple-criteria optimization problem with severe constraints remains a significant issue in multi-objective evolutionary algorithms. The problem primarily stems from the need for a suitable constraint handling technique. One potential approach is balancing the search in feasible and infeasible regions to find the Pareto front efficiently. The justification for such a strategy is that the infeasible region also provides valuable information, especially in problems with a small percentage of feasibility areas. To that end, this paper investigates the potential of the infeasibility-driven principle based on multiple constraint ranking-based techniques to solve a multi-objective problem with a small feasibility ratio. By analyzing the results from intensive experiments on a set of test problems, including the realistic multi-objective car structure design and actuator design problem, it is shown that there is a significant improvement gained in terms of convergence by utilizing the generalized version of the multiple constraint ranking techniques.

References

1.
Watanabe
,
T.
,
Tatsukawa
,
T.
,
Jaimes
,
A. L.
,
Aono
,
H.
,
Nonomura
,
T.
,
Oyama
,
A.
, and
Fujii
,
K.
,
2014
, “
Many-Objective Evolutionary Computation for Optimization of Separated-Flow Control Using a DBD Plasma Actuator
,”
IEEE Congress on Evolutionary Computation (CEC) 2014
,
Beijing, China
,
July 6–11
,
IEEE, pp. 2849–2854
.
2.
Schlueter
,
M.
,
Yam
,
C. H.
,
Watanabe
,
T.
, and
Oyama
,
A.
,
2015
, “
Many-Objective Optimization of Interplanetary Space Mission Trajectories
,”
IEEE Congress on Evolutionary Computation (CEC) 2015
,
Sendai, Japan
,
May 25–28
,
IEEE, pp. 3256–3262
.
3.
Kohira
,
T.
,
Kemmotsu
,
H.
,
Akira
,
O.
, and
Tatsukawa
,
T.
,
2018
, “
Proposal of Benchmark Problem Based on Real-World Car Structure Design Optimization
,”
Proceedings of the 2018 Genetic and Evolutionary Computation Conference
,
Kyoto, Japan
,
July 15–19
, pp.
183
184
.
4.
Homaifar
,
A.
,
Qi
,
C. X.
, and
Lai
,
S. H.
,
1994
, “
Constrained Optimization Via Genetic Algorithms
,”
Simulation
,
62
(
4
), pp.
242
253
.
5.
Mezura-Montes
,
E.
, and
Coello
,
C. A. C.
,
2011
, “
Constraint-Handling in Nature-Inspired Numerical Optimization: Past, Present and Future
,”
Swarm Evolut. Comput.
,
1
(
4
), pp.
173
194
.
6.
Deb
,
K.
,
2000
, “
An Efficient Constraint Handling Method for Genetic Algorithms
,”
Comput. Meth. Appl. Mech. Eng.
,
186
(
2–4
), pp.
311
338
.
7.
Barbosa
,
H. J.
, and
Lemonge
,
A. C.
,
2008
,
An Adaptive Penalty Method for Genetic Algorithms in Constrained Optimization Problems
,
INTECH Open Access Publisher
,
London, UK
.
8.
Runarsson
,
T. P.
, and
Yao
,
X.
,
2000
, “
Stochastic Ranking for Constrained Evolutionary Optimization
,”
IEEE Trans. Evolut. Comput.
,
4
(
3
), pp.
284
294
.
9.
Runarsson
,
T.
, and
Yao
,
X.
,
2003
, “Constrained Evolutionary Optimization,”
Evolutionary Optimization
,
R.
Sarker
,
M.
Masoud
and
Y.
Xin
, eds.,
Springer
,
New York
, pp.
87
113
.
10.
Ho
,
P. Y.
, and
Shimizu
,
K.
,
2007
, “
Evolutionary Constrained Optimization Using an Addition of Ranking Method and a Percentage-Based Tolerance Value Adjustment Scheme
,”
Inf. Sci.
,
177
(
14
), pp.
2985
3004
.
11.
de Paula Garcia
,
R.
,
de Lima
,
B. S. L. P.
,
de Castro Lemonge
,
A. C.
, and
Jacob
,
B. P.
,
2017
, “
A Rank-Based Constraint Handling Technique for Engineering Design Optimization Problems Solved by Genetic Algorithms
,”
Comput. Struct.
,
187
, pp.
77
87
.
12.
de Castro Rodrigues
,
M.
,
de Lima
,
B. S. L. P.
, and
Guimarães
,
S.
,
2016
, “
Balanced Ranking Method for Constrained Optimization Problems Using Evolutionary Algorithms
,”
Inf. Sci.
,
327
, pp.
71
90
.
13.
de Castro Rodrigues
,
M.
,
Guimarães
,
S.
, and
de Lima
,
B. S. L. P.
,
2018
, “
E-BRM: A Constraint Handling Technique to Solve Optimization Problems With Evolutionary Algorithms
,”
Appl. Soft. Comput.
,
72
, pp.
14
29
.
14.
Xiahou
,
T.
,
Liu
,
Y.
, and
Zhang
,
Q.
,
2020
, “
Multi-objective Redundancy Allocation for Multi-state System Design Under Epistemic Uncertainty of Component States
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111703
.
15.
Sullivan
,
T. A.
,
Van De Ven
,
J. D.
,
Northrop
,
W. F.
, and
McCabe
,
K.
,
2015
, “
Integrated Mechanical and Thermodynamic Optimization of an Engine Linkage Using a Multi-objective Genetic Algorithm
,”
ASME J. Mech. Des.
,
137
(
2
), p.
024501
.
16.
Shankar Bhattacharjee
,
K.
,
Kumar Singh
,
H.
, and
Ray
,
T.
,
2017
, “
A Novel Decomposition-Based Evolutionary Algorithm for Engineering Design Optimization
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041403
.
17.
Tian
,
X.
, and
Li
,
J.
,
2020
, “
Robust Aerodynamic Shape Optimization Using a Novel Multi-objective Evolutionary Algorithm Coupled With Surrogate Model
,”
Struct. Multidiscipl. Optim.
,
62
(
4
), pp.
1969
1987
.
18.
Ray
,
T.
,
Singh
,
H. K.
,
Isaacs
,
A.
, and
Smith
,
W.
,
2009
, “Infeasibility Driven Evolutionary Algorithm for Constrained Optimization,”
Constraint-Handling in Evolutionary Optimization
,
E.
Mezura-Montes
, ed.,
Springer
,
Berlin
, pp.
145
165
.
19.
Dwianto
,
Y. B.
,
Fukumoto
,
H.
, and
Oyama
,
A.
,
2019
, “
On Improving the Constraint-Handling Performance With Modified Multiple Constraint Ranking (MCR-MOD) for Engineering Design Optimization Problems Solved by Evolutionary Algorithms
,”
Proceedings of the 2019 Genetic and Evolutionary Computation Conference
,
Prague, Czech Republic
,
July 13–17
, pp.
762
770
.
20.
Dwianto
,
Y. B.
,
Fukumoto
,
H.
, and
Oyama
,
A.
,
2020
, “
Adaptively Preserving Solutions in Both Feasible and Infeasible Regions on Generalized Multiple Constraint Ranking
,”
Proceedings of the 2020 Genetic and Evolutionary Computation Conference
,
Virtual
,
July 8–12
, pp.
690
698
.
21.
Deb
,
K.
,
Agrawal
,
S.
,
Pratap
,
A.
, and
Meyarivan
,
T.
,
2000
, “
A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II
,”
International Conference on Parallel Problem Solving from Nature
,
Paris, France
,
Sept. 18–20
, Springer, pp.
849
858
.
22.
Fan
,
Z.
,
Li
,
W.
,
Cai
,
X.
,
Li
,
H.
,
Wei
,
C.
,
Zhang
,
Q.
,
Deb
,
K.
, and
Goodman
,
E.
,
2020
, “
Difficulty Adjustable and Scalable Constrained Multiobjective Test Problem Toolkit
,”
Evolut. Comput.
,
28
(
3
), pp.
339
378
.
23.
Dwianto
,
Y. B.
,
Fukumoto
,
H.
, and
Oyama
,
A.
,
2020
, “
Adaptively Enhancing Infeasible Region Exploration on Multiple Constraint Ranking
,”
Trans. Japanese Soc. Evolut. Comput.
,
11
(
2
), pp.
18
28
.
24.
Deb
,
K.
, and
Jain
,
H.
,
2013
, “
An Evolutionary Many-objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints
,”
IEEE Trans. Evolut. Comput.
,
18
(
4
), pp.
577
601
.
25.
Fukumoto
,
H.
, and
Oyama
,
A.
,
2018
, “
A Generic Framework for Incorporating Constraint Handling Techniques Into Multi-objective Evolutionary Algorithms
,”
International Conference on the Applications of Evolutionary Computation
,
Parma, Italy
,
Apr. 4–6
, Springer, pp.
634
649
.
26.
Picard
,
C.
, and
Schiffmann
,
J.
,
2020
, “
Realistic Constrained Multiobjective Optimization Benchmark Problems From Design
,”
IEEE Trans. Evolut. Comput.
,
25
(
2
), pp.
234
246
.
27.
Zitzler
,
E.
,
Thiele
,
L.
,
Laumanns
,
M.
,
Fonseca
,
C. M.
, and
Da Fonseca
,
V. G.
,
2003
, “
Performance Assessment of Multiobjective Optimizers: An Analysis and Review
,”
IEEE Trans. Evolut. Comput.
,
7
(
2
), pp.
117
132
.
28.
Blank
,
J.
, and
Deb
,
K.
,
2020
, “
Pymoo: Multi-Objective Optimization in Python
,”
IEEE Access
,
8
, pp.
89497
89509
.
29.
Benchmark Problem Based on Real-World Car Structure Design Optimization Mazda Bechmark Problem
,” http://ladse.eng.isas.jaxa.jp/benchmark/Accessed August 4, 2022.
You do not currently have access to this content.