Abstract

Many complex engineering systems can be represented in a topological form, such as graphs. This paper utilizes a machine learning technique called Geometric Deep Learning (GDL) to aid designers with challenging, graph-centric design problems. The strategy presented here is to take the graph data and apply GDL to seek the best realizable performing solution effectively and efficiently with lower computational costs. This case study used here is the synthesis of analog electrical circuits that attempt to match a specific frequency response within a particular frequency range. Previous studies utilized an enumeration technique to generate 43,249 unique undirected graphs presenting valid potential circuits. Unfortunately, determining the sizing and performance of many circuits can be too expensive. To reduce computational costs with a quantified trade-off in accuracy, the fraction of the circuit graphs and their performance are used as input data to a classification-focused GDL model. Then, the GDL model can be used to predict the remainder cheaply, thus, aiding decision-makers in the search for the best graph solutions. The results discussed in this paper show that additional graph-based features are useful, favorable total set classification accuracy of 80% in using only 10% of the graphs, and iteratively built GDL models can further subdivide the graphs into targeted groups with medians significantly closer to the best and containing 88.2 of the top 100 best-performing graphs on average using 25% of the graphs.

References

1.
Herber
,
D. R.
,
2017
, “
Advances in Combined Architecture, Plant, and Control Design
”.
Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
2.
Selva
,
D.
,
Cameron
,
B.
, and
Crawley
,
E.
,
2016
, “
Patterns in System Architecture Decisions
,”
Syst. Eng.
,
19
(
6
), pp.
477
497
.
3.
Foster
,
R. M.
,
1932
, “
Geometrical Circuits of Electrical Networks
,”
Trans. Am. Inst. Electr. Eng.
,
51
(
2
), pp.
309
317
.
4.
Fan
,
W.
,
Ma
,
Y.
,
Li
,
Q.
,
He
,
Y.
,
Zhao
,
E.
,
Tang
,
J.
, and
Yin
,
D.
,
2019
, “
Graph Neural Networks for Social Recommendation
,”
WWW ’19: The World Wide Web Conference
,
San Francisco, CA
,
May 13–17
, pp.
417
426
.
5.
Zhou
,
Y.
,
Liu
,
S.
,
Siow
,
J.
,
Du
,
X.
, and
Liu
,
Y.
,
2019
, “
Design: Effective Vulnerability Identification by Learning Comprehensive Program Semantics Via Graph Neural Networks
,”
33rd International Conference on Neural Information Processing Systems
,
Vancouver, Canada
,
Dec. 8–14
, pp.
10197
10207
.
6.
Cheng
,
X.
,
Wang
,
H.
,
Hua
,
J.
,
Xu
,
G.
, and
Sui
,
Y.
,
2021
, “
Deepwukong: Statically Detecting Software Vulnerabilities Using Deep Graph Neural Network
,”
ACM Trans. Softw. Eng. Methodol.
,
30
(
3
), p.
1
33
.
7.
Yang
,
W.
,
Ding
,
H.
, and
Zhang
,
D.
,
2018
, “
New Graph Representation for Planetary Gear Trains
,”
ASME J. Mech. Des.
,
140
(
1
), p.
012303
.
8.
Hsu
,
C.-H.
, and
Lam
,
K.-T.
,
1992
, “
A New Graph Representation for the Automatic Kinematic Analysis of Planetary Spur-gear Trains
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
196
200
.
9.
Herber
,
D. R.
,
Guo
,
T.
, and
Allison
,
J. T.
,
2017
, “
Enumeration of Architectures With Perfect Matchings
,”
ASME J. Mech. Des.
,
139
(
5
), p.
051403
.
10.
Herber
,
D. R.
,
2020
, “
Enhancements to the Perfect Matching Approach for Graph Enumeration-Based Engineering Challenges
,”
IDETC-CIE 2020 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Virtual
,
Aug. 17–19
, Vol. 11A.
11.
Macmahon
,
P. A.
,
1994
, “
The Combinations of Resistances
,”
Discret. Appl. Math.
,
54
(
2
), pp.
225
228
.
12.
Maier
,
M. W.
, and
Rechtin
,
E.
,
2009
,
The Art of Systems Architecting
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
13.
Arney
,
D. C.
, and
Wilhite
,
A. W.
,
2014
, “
Modeling Space System Architectures with Graph Theory
,”
J. Spacecr. Rockets
,
51
(
5
), pp.
1413
1429
.
14.
Taft
,
J.
,
2018
,
A Mathematical Representation of System Architectures, Technical Report PNNL-27387, Battelle for the US Department of Energy, Pacific Northwest National Laboratory, Mar.
15.
Potts
,
M.
,
Pia
,
S.
,
Johnson
,
A.
, and
Bullock
,
S.
,
2017
, “
Hidden Structures: Using Graph Theory to Explore Complex System of Systems Architectures
,”
Complex Systems Design and Management
.
16.
Schmidt
,
L. C.
,
Shetty
,
H.
, and
Chase
,
S. C.
,
1999
, “
A Graph Grammar Approach for Structure Synthesis of Mechanisms
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
371
376
.
17.
Wyatt
,
D. F.
,
Wynn
,
D. C.
,
Jarrett
,
J. P.
, and
Clarkson
,
P. J.
,
2012
, “
Supporting Product Architecture Design Using Computational Design Synthesis With Network Structure Constraints
,”
Res. Eng. Des.
,
23
(
1
), pp.
17
52
.
18.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
19.
Bronstein
,
M. M.
,
Bruna
,
J.
,
LeCun
,
Y.
,
Szlam
,
A.
, and
Vandergheynst
,
P.
,
2017
, “
Geometric Deep Learning: Going Beyond Euclidean Data
,”
IEEE Signal Process Mag.
,
34
(
4
), pp.
18
42
.
20.
Atz
,
K.
,
Grisoni
,
F.
, and
Schneider
,
G.
,
2021
,
Geometric Deep Learning on Molecular Representations. arXiv:2107.12375.
21.
Gainza
,
P.
,
Sverrisson
,
F.
,
Monti
,
F.
,
Rodola
,
E.
,
Boscaini
,
D.
,
Bronstein
,
M. M.
, and
Correia
,
B. E.
,
2020
, “
Deciphering Interaction Fingerprints From Protein Molecular Surfaces Using Geometric Deep Learning
,”
Nature
,
17
(
2
), pp.
184
192
.
22.
Segler
,
M. H. S.
,
Kogej
,
T.
,
Tyrchan
,
C.
, and
Waller
,
M. P.
,
2018
, “
Generating Focused Molecule Libraries for Drug Discovery With Recurrent Neural Networks
,”
ACS Cent. Sci.
,
4
(
1
), pp.
120
131
.
23.
Fedorova
,
S.
,
Tono
,
A.
,
Nigam
,
M. S.
,
Zhang
,
J.
,
Ahmadnia
,
A.
,
Bolognesi
,
C.
, and
Michels
,
D.
,
2021
, “
Synthetic Data Generation Pipeline for Geometric Deep Learning in Architecture
,”
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
,
XLIII-B2-2021
, pp.
337
344
.
24.
Thiery
,
A. H.
,
Braeu
,
F.
,
Tun
,
T. A.
,
Aung
,
T.
, and
Girard
,
M. J. A.
,
2022
,
Medical Application of Geometric Deep Learning for the Diagnosis of Glaucoma. arXiv:2204.07004.
25.
Sarasua
,
I.
,
Lee
,
J.
, and
Wachinger
,
C.
,
2021
,
Geometric Deep Learning on Anatomical Meshes for the Prediction of Alzheimer’s Disease. arXiv:2104.10047.
26.
Wong
,
J. C.
,
Ooi
,
C. C.
,
Chattoraj
,
J.
,
Lestandi
,
L.
,
Dong
,
G.
,
Kizhakkinan
,
U.
,
Rosen
,
D. W.
,
Jhon
,
M. H.
, and
Dao
,
M. H.
,
2022
, “
Graph Neural Network Based Surrogate Model of Physics Simulations for Geometry Design
,”
IEEE Symposium Series on Computational Intelligence
,
Singapore
,
Dec. 4–7
, pp.
1469
1475
.
27.
Krokos
,
V.
,
Bordas
,
S. P. A.
, and
Kerfriden
,
P.
,
2022
,
A Graph-Based Probabilistic Geometric Deep Learning Framework With Online Physics-Based Corrections to Predict the Criticality of Defects in Porous Materials. arXiv:2205.06562.
28.
Pfaff
,
T.
,
Fortunato
,
M.
,
Sanchez-Gonzalez
,
A.
, and
Battaglia
,
P. W.
,
2021
,
Learning Mesh-Based Simulation with Graph Networks. arXiv:2010.03409.
29.
Park
,
J.
, and
Park
,
J.
,
2019
, “
Physics-Induced Graph Neural Network: An Application to Wind-farm Power Estimation
,”
Energy
,
187
, p.
115883
.
30.
Zhang
,
G.
,
He
,
H.
, and
Katabi
,
D.
,
2019
, “
Circuit-GNN: Graph Neural Networks for Distributed Circuit Design
,”
International Conference on Machine Learning
,
Long Beach, CA
,
June 9–15
, Vol. 97, pp.
7364
7373
.
31.
Xiao
,
Y.
,
Ahmed
,
F.
, and
Sha
,
Z.
,
2023
, “
Graph Neural Network-Based Design Decision Support for Shared Mobility Systems
,”
ASME J. Mech. Des.
,
145
(
9
), p.
091703
.
32.
Ferrero
,
V.
,
DuPont
,
B.
,
Hassani
,
K.
, and
Grandi
,
D.
,
2021
, “
Classifying Component Function in Product Assemblies With Graph Neural Networks
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021406
.
33.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
34.
Ranjan
,
A.
,
Bolkart
,
T.
,
Sanyal
,
S.
, and
Black
,
M. J.
,
2018
,
Generating 3D Faces Using Convolutional Mesh Autoencoders. arXiv:1807.10267.
35.
Cheng
,
S.
,
Bronstein
,
M.
,
Zhou
,
Y.
,
Kotsia
,
I.
,
Pantic
,
M.
, and
Zafeiriou
,
S.
,
2019
,
MeshGAN: Non-Linear 3D Morphable Models of Faces. arXiv:1903.10384.
36.
Li
,
S.
, and
Corney
,
J.
,
2023
, “
Multi-View Expressive Graph Neural Networks for 3d CAD Model Classification
,”
Comput. Industry
,
151
(
C
), p.
103993
.
37.
Cao
,
W.
,
Robinson
,
T.
,
Hua
,
Y.
,
Boussuge
,
F.
,
Colligan
,
A. R.
, and
Pan
,
W.
,
2020
, “
Graph Representation of 3D CAD Models for Machining Feature Recognition With Deep Learning
,”
Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Volume 11A: 46th Design Automation Conference (DAC)
,
Virtual
,
Aug. 17–19
.
38.
Sirico
,
A.
GDL-for-Engineering-Design.
https://github.com/anthonysirico/GDL-for-Engineering-Design.
39.
Guo
,
T.
,
Herber
,
D. R.
, and
Allison
,
J. T.
,
2019
, “
Circuit Synthesis Using Generative Adversarial Networks (GANs)
,”
AIAA Scitech Forum
,
San Diego, CA
,
Jan. 7–11
.
40.
Diestel
,
R.
,
2017
,
Graph Theory
,
Springer
,
London
.
41.
Godsil
,
C.
, and
Royle
,
G.
,
2001
,
Algebraic Graph Theory
,
Springer
,
New York
.
42.
Borkar
,
V. S.
,
Ejov
,
V.
, and
Nguyen
,
G. T.
,
2012
,
Hamiltonian Cycle Problem and Markov Chains
,
Springer
,
New York
.
43.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2019
, “
A Problem Class With Combined Architecture, Plant, and Control Design Applied to Vehicle Suspensions
,”
ASME J. Mech. Des.
,
141
(
10
), p.
101401
.
44.
Guo
,
T.
,
Herber
,
D. R.
, and
Allison
,
J. T.
,
2018
, “
Reducing Evaluation Cost for Circuit Synthesis Using Active Learning’
,”
ASME International Design Engineering Technical Conferences, No. DETC2018-85654.
45.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2012
, “
Imagenet Classification with Deep Convolutional Neural Networks
,”
Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012
,
Lake Tahoe, NV
,
Dec. 3–6
, pp.
1106
1114
.
46.
Wang
,
T.
,
Wu
,
D. J.
,
Coates
,
A.
, and
Ng
,
A. Y.
,
2012
, “
End-to-End Text Recognition With Convolutional Neural Networks
,”
International Conference on Pattern Recognition
,
Tsukuba Science City, Japan
,
Nov. 11–15
, pp.
3304
3308
.
47.
Deng
,
L.
,
Li
,
J.
,
Huang
,
J.-T.
,
Yao
,
K.
,
Yu
,
D.
,
Seide
,
F.
,
Seltzer
,
M.
,
Zweig
,
G.
,
He
,
X.
,
Williams
,
J.
,
Gong
,
Y.
, and
Acero
,
A.
,
2013
, “
Recent Advances in Deep Learning for Speech Research At Microsoft
,”
IEEE International Conference on Acoustics, Speech and Signal Processing
,
Vancouver, Canada
,
May 26–31
, pp.
8604
8608
.
48.
Nickel
,
M.
, and
Kiela
,
D.
,
2017
,
Poincaré Embeddings for Learning Hierarchical Representations. arXiv:1705.08039.
49.
Chamberlain
,
B. P.
,
Clough
,
J.
, and
Deisenroth
,
M. P.
,
2017
,
Neural Embeddings of Graphs in Hyperbolic Space. arXiv:1705.10359.
50.
Bronstein
,
M. M.
,
Bruna
,
J.
,
Cohen
,
T.
, and
Velickovic
,
P.
,
2021
,
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. arXiv:2104.13478.
51.
Cohen
,
T. S.
, and
Welling
,
M.
,
2016
,
Steerable CNNs. arXiv:1612.08498.
52.
Cohen
,
T. S.
,
Geiger
,
M.
,
Koehler
,
J.
, and
Welling
,
M.
,
2018
,
Spherical CNNs.
53.
Lecun
,
Y.
,
Bottou
,
L.
,
Bengio
,
Y.
, and
Haffner
,
P.
,
1998
, “
Gradient-based Learning Applied to Document Recognition
,”
Proc. IEEE
,
86
(
11
), pp.
2278
2324
.
54.
Zhang
,
M.
,
Cui
,
Z.
,
Neumann
,
M.
, and
Chen
,
Y.
,
2018
, “
An End-to-End Deep Learning Architecture for Graph Classification
,”
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence
,
New Orleans, LA
,
Feb. 2–7
, Vol.
32
, pp.
4438
4445
.
55.
Kipf
,
T. N.
, and
Welling
,
M.
,
2016
,
Semi-Supervised Classification With Graph Convolutional Networks. arXiv:1609.02907.
56.
Ma
,
Y.
,
Wang
,
S.
,
Aggarwal
,
C. C.
, and
Tang
,
J.
,
2019
,
Graph Convolutional Networks With Eigenpooling. arXiv:1904.13107.
57.
Ying
,
R.
,
You
,
J.
,
Morris
,
C.
,
Ren
,
X.
,
Hamilton
,
W. L.
, and
Leskovec
,
J.
,
2018
,
Hierarchical Graph Representation Learning With Differentiable Pooling. arXiv:1806.08804.
58.
Duvenaud
,
D.
,
Maclaurin
,
D.
,
Aguilera-Iparraguirre
,
J.
,
Gómez-Bombarelli
,
R.
,
Hirzel
,
T.
,
Aspuru-Guzik
,
A.
, and
Adams
,
R. P.
,
2015
,
Convolutional Networks on Graphs for Learning Molecular Fingerprints. arXiv:1509.09292.
59.
Rousseau
,
F.
,
Kiagias
,
E.
, and
Vazirgiannis
,
M.
,
2015
, “
Text Categorization as A Graph Classification Problem
,”
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing
,
Beijing, China
,
July
, pp.
1702
1712
.
60.
Shen
,
M.
,
Zhang
,
J.
,
Zhu
,
L.
,
Xu
,
K.
, and
Du
,
X.
,
2021
, “
Accurate Decentralized Application Identification Via Encrypted Traffic Analysis Using Graph Neural Networks
,”
IEEE Trans. Inf. Forensics Secur.
,
16
, pp.
2367
2380
.
61.
Hashemi
,
A.
, and
Pilevar
,
A. H.
,
2013
, “
Mass Detection in Lung CT Images by Using Graph Classification
,”
J. Electr. Electron. Eng.
,
3
(
3
).
62.
James
,
G.
,
Witten
,
D.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2021
,
An Introduction to Statistical Learning
,
Springer
,
New York
.
63.
Morris
,
C.
,
Ritzert
,
M.
,
Fey
,
M.
,
Hamilton
,
W. L.
,
Lenssen
,
J. E.
,
Rattan
,
G.
, and
Grohe
,
M.
,
2018
,
Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. arXiv: 1810.02244.
64.
Grover
,
A.
, and
Leskovec
,
J.
,
2016
,
node2vec: Scalable Feature Learning for Networks. arXiv: 1607.00653.
65.
Hinton
,
G. E.
,
Srivastava
,
N.
,
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Salakhutdinov
,
R.
,
2012
,
Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors. arXiv: 1207.0580.
66.
Bengio
,
Y.
,
2012
,
Practical Recommendations for Gradient-Based Training of Deep Architectures. arXiv: 1206.5533.
67.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
68.
Chollet
,
F.
,
2018
,
Deep Learning with Python
,
Manning Publications
,
Shelter Island, NY
.
69.
Kingma
,
D. P.
, and
Ba
,
J. L.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
International Conference on Learning Representations
,
San Diego, CA
,
May 7–9
.
70.
Simske
,
S. J.
,
2013
,
Meta-Algorithmics: Patterns for Robust, Low Cost, High Quality Systems
,
John Wiley & Sons
,
Hoboken, NJ
.
71.
Jurman
,
G.
,
Riccadonna
,
S.
, and
Furlanello
,
C.
,
2012
, “
A Comparison of MCC and CEN Error Measures in Multi-Class Prediction
,”
PLoS. One.
,
7
(
8
), p.
e41882
.
72.
Chicco
,
D.
,
2017
, “
Ten Quick Tips for Machine Learning in Computational Biology
,”
BioData Min.
,
10
, p.
35
.
73.
Grimbleby
,
J. B.
,
1995
, “
Automatic Analogue Network Synthesis Using Genetic Algorithms
,”
First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications
,
Sheffield, UK
,
Sept. 12–14
, pp.
53
58
.
74.
Das
,
A.
, and
Vemuri
,
R.
,
2007
, “
An Automated Passive Analog Circuit Synthesis Framework Using Genetic Algorithms
,”
IEEE Computer Society Annual Symposium on VLSI (ISVLSI'07)
,
Porto Algere, Brazil
,
Mar. 9–11
, pp.
145
152
. http://dx.doi.org.10.1109/ISVLSI.2007.22
75.
Grimbleby
,
J. B.
,
2000
, “
Automatic Analogue Circuit Synthesis Using Genetic Algorithms
,”
IEE P.-Circ. Dev. Syst.
,
147
(
6
), pp.
319
323
.
76.
Sussman
,
G.
, and
Stallman
,
R.
,
1975
, “
Heuristic Techniques in Computer-aided Circuit Analysis
,”
IEEE Trans. Circuits Syst.
,
22
(
11
), pp.
857
865
.
77.
Harjani
,
R.
,
Rutenbar
,
R.
, and
Carley
,
L.
,
1989
, “
OASYS: a Framework for Analog Circuit Synthesis
,”
IEEE T. Comput. Aid. D.
,
8
(
12
), pp.
1247
1266
.
78.
Lomnicki
,
Z. A.
,
1972
, “
Two-terminal Series-Parallel Networks
,”
Adv. Appl. Probab.
,
4
(
1
), pp.
109
150
.
79.
Isokawa
,
Y.
,
2016
, “
Series-parallel Circuits and Continued Fractions
,”
Appl. Math. Sci.
,
10
(
27
), pp.
1321
1331
.
80.
Bayrak
,
A. E.
,
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
2016
, “
Topology Generation for Hybrid Electric Vehicle Architecture Design
,”
ASME J. Mech. Des.
,
138
(
8
), p.
081401
.
81.
del Castillo
,
J. M.
,
2002
, “
Enumeration of 1-DOF Planetary Gear Train Graphs Based on Functional Constraints
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
723
732
.
82.
Ma
,
W.
,
Trusina
,
A.
,
El-Samad
,
H.
,
Lim
,
W. A.
, and
Tang
,
C.
,
2009
, “
Defining Network Topologies That Can Achieve Biochemical Adaptation
,”
Cell
,
138
(
4
), pp.
760
773
.
83.
Bonacich
,
P.
,
1987
, “
Power and Centrality: A Family of Measures
,”
Am. J. Sociol.
,
92
(
5
), pp.
1170
1182
.
84.
Freeman
,
L. C.
,
1977
, “
A Set of Measures of Centrality Based on Betweenness
,”
Sociometry
,
40
(
1
), pp.
35
41
.
85.
Koschützki
,
D.
,
Lehmann
,
K. A.
,
Peeters
,
L.
,
Richter
,
S.
,
Tenfelde-Podehl
,
D.
, and
Zlotowski
,
O.
,
2005
,
Centrality Indices
,
Springer
,
Berlin/Heidelberg
, pp.
16
61
.
86.
Boldi
,
P.
, and
Vigna
,
S.
,
2014
, “
Axioms for Centrality
,”
Internet Math.
,
10
(
3–4
), pp.
222
262
.
87.
Xu
,
K.
,
Hu
,
W.
,
Leskovec
,
J.
, and
Jegelka
,
S.
,
2019
, “
How Powerful are Graph Neural Networks?
,” arXiv: 1810.00826. https://arxiv.org/abs/1810.00826
88.
Fey
,
M.
, and
Lenssen
,
J. E.
,
2019
, “
Fast Graph Representation Learning with PyTorch Geometric
,”
ICLR Workshop on Representation Learning on Graphs and Manifolds
,
New Orleans, LA
,
May 6
.
89.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
,
Lin
,
Z.
,
Gimelshein
,
N.
, and
Antiga
,
L.
,
2019
, “
PyTorch: An Imperative Style, High-Performance Deep Learning Library
,”
33rd International Conference on Neural Information Processing Systems
,
Vancouver, Canada
,
Dec. 8–14
,
Vol. 32
.
90.
Van Rossum
,
G.
, and
Drake
,
F. L.
,
2009
,
Python 3 Reference Manual
,
CreateSpace
,
Scotts Valley, CA
.
91.
Hagberg
,
A. A.
,
Schult
,
D. A.
, and
Swart
,
P. J.
,
2008
, “
Exploring Network Structure, Dynamics, and Function Using NetworkX
,”
Python in Science Conference
,
Pasadena, CA
,
Aug. 21
, pp.
11
15
. https://www.osti.gov/biblio/960616
92.
The pandas development team, 2020. pandas-dev/pandas: Pandas. doi10.5281/zenodo.3509134.
You do not currently have access to this content.