Abstract

Unmanned engineering systems that execute various operations are becoming increasingly complex relying on a large number of components and their interactions. The reliability, maintainability, and performance optimization of these systems are critical due to their intricate nature and inaccessibility during operations. This paper introduces a new reliability-based optimization framework for planning operational profiles for unmanned systems. The proposed method employs deep learning techniques for subsystem health monitoring, dynamic Bayesian networks for system reliability analysis, and multi-objective optimization schemes for optimizing system performance. The proposed framework systematically integrates these schemes to enable their application to a wide range of tasks, including offline reliability-based optimization of system operational profiles. This framework is the first in the literature that incorporates health monitoring of multi-component systems with causal relationships. Using this hybrid scheme on unmanned systems can improve their reliability, extend their lifespan, and enable them to execute more challenging missions. The proposed framework is implemented and executed using a simulation model for the engine cooling and control system of an unmanned surface vessel.

References

1.
Hazra
,
I.
,
Chatterjee
,
A.
,
Southgate
,
J.
,
Weiner
,
M. J.
,
Groth
,
K. M.
, and
Azarm
,
S.
,
2023
, “
A Reliability-Based Optimization Framework for Planning Operational Profiles for Unmanned Systems
,”
In Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering (IDETC-CIE) Conference
,
Boston, MA
,
Aug. 20–23
.
2.
Ruiz-Tagle Palazuelos
,
A.
,
Droguett
,
E. L.
, and
Pascual
,
R.
,
2020
, “
A Novel Deep Capsule Neural Network for Remaining Useful Life Estimation
,”
Proc. Inst. Mech. Eng., Part O: J. Risk Reliab.
,
234
(
1
), pp.
151
167
.
3.
Helbing
,
G.
, and
Ritter
,
M.
,
2018
, “
Deep Learning for Fault Detection in Wind Turbines
,”
Renew. Sustain. Energy Rev.
,
98
, pp.
189
198
.
4.
Ellefsen
,
A. L.
,
Cheng
,
X.
,
Holmeset
,
F. T.
,
Æsøy
,
V.
,
Zhang
,
H.
, and
Ushakov
,
S.
,
2019
, “
Automatic Fault Detection for Marine Diesel Engine Degradation in Autonomous Ferry Crossing Operation
,”
2019 IEEE International Conference on Mechatronics and Automation (ICMA)
,
Tianjin, China
,
Aug. 4–7
, IEEE, pp.
2195
2200
.
5.
Wang
,
R.
,
Chen
,
H.
, and
Guan
,
C.
,
2021
, “
A Bayesian Inference-Based Approach for Performance Prognostics Towards Uncertainty Quantification and Its Applications on the Marine Diesel Engine
,”
ISA Trans.
,
118
, pp.
159
173
.
6.
Lewis
,
A. D.
, and
Groth
,
K. M.
,
2020
, “
A Dynamic Bayesian Network Structure for Joint Diagnostics and Prognostics of Complex Engineering Systems
,”
Algorithms
,
13
(
3
), p.
64
.
7.
Moradi
,
R.
,
Ruiz-Tagle Palazuelos
,
A.
,
Lopez Droguett
,
E.
, and
Groth
,
K. M.
,
2020
, “
Toward a Framework for Risk Monitoring of Complex Engineering Systems With Online Operational Data: A Deep Learning-Based Solution
,”
Proc. Inst. Mech. Eng., Part O: J. Risk Reliab.
,
237
(
5
), p.
1748006X221079964
.
8.
Guo
,
Y.
,
Wang
,
H.
,
Guo
,
Y.
,
Zhong
,
M.
,
Li
,
Q.
, and
Gao
,
C.
,
2022
, “
System Operational Reliability Evaluation Based on Dynamic Bayesian Network and XgBoost
,”
Reliab. Eng. Syst. Saf.
,
225
, p.
108622
.
9.
Moradi
,
R.
, and
Groth
,
K. M.
,
2020
, “
Modernizing Risk Assessment: A Systematic Integration of Pra and Phm Techniques
,”
Reliab. Eng. Syst. Saf.
,
204
, p.
107194
.
10.
Moradi
,
R.
,
Cofre-Martel
,
S.
,
Droguett
,
E. L.
,
Modarres
,
M.
, and
Groth
,
K. M.
,
2022
, “
Integration of Deep Learning and Bayesian Networks for Condition and Operation Risk Monitoring of Complex Engineering Systems
,”
Reliab. Eng. Syst. Saf.
,
222
, p.
108433
.
11.
Villa
,
V.
,
Paltrinieri
,
N.
,
Khan
,
F.
, and
Cozzani
,
V.
,
2016
, “
Towards Dynamic Risk Analysis: A Review of the Risk Assessment Approach and Its Limitations in the Chemical Process Industry
,”
Saf. Sci.
,
89
, pp.
77
93
.
12.
Fenton
,
N.
, and
Neil
,
M.
,
2018
,
Risk Assessment and Decision Analysis With Bayesian Networks
,
CRC Press
,
Boca Raton, FL
.
13.
Wilson
,
A. G.
, and
Huzurbazar
,
A. V.
,
2007
, “
Bayesian Networks for Multilevel System Reliability
,”
Reliab. Eng. Syst. Saf.
,
92
(
10
), pp.
1413
1420
.
14.
Cai
,
B.
,
Liu
,
Y.
,
Liu
,
Z.
,
Tian
,
X.
,
Dong
,
X.
, and
Yu
,
S.
,
2012
, “
Using Bayesian Networks in Reliability Evaluation for Subsea Blowout Preventer Control System
,”
Reliab. Eng. Syst. Saf.
,
108
, pp.
32
41
.
15.
Gao
,
C.
,
Guo
,
Y.
,
Zhong
,
M.
,
Liang
,
X.
,
Wang
,
H.
, and
Yi
,
H.
,
2021
, “
Reliability Analysis Based on Dynamic Bayesian Networks: A Case Study of an Unmanned Surface Vessel
,”
Ocean Eng.
,
240
, p.
109970
.
16.
Khakzad
,
N.
,
2015
, “
Application of Dynamic Bayesian Network to Risk Analysis of Domino Effects in Chemical Infrastructures
,”
Reliab. Eng. Syst. Saf.
,
138
, pp.
263
272
.
17.
Lu
,
Q.
, and
Zhang
,
W.
,
2022
, “
Integrating Dynamic Bayesian Network and Physics-Based Modeling for Risk Analysis of a Time-Dependent Power Distribution System During Hurricanes
,”
Reliab. Eng. Syst. Saf.
,
220
, p.
108290
.
18.
Wang
,
L.
,
Sun
,
W.
,
Long
,
Y.
, and
Yang
,
X.
,
2018
, “
Reliability-Based Performance Optimization of Tunnel Boring Machine Considering Geological Uncertainties
,”
IEEE Access
,
6
, pp.
19086
19098
.
19.
Hejazi
,
T.-H.
,
Badri
,
H.
, and
Yang
,
K.
,
2019
, “
A Reliability-Based Approach for Performance Optimization of Service Industries: An Application to Healthcare Systems
,”
Eur. J. Oper. Res.
,
273
(
3
), pp.
1016
1025
.
20.
Kim
,
C.
,
Wang
,
S.
,
Hwang
,
I.
, and
Lee
,
J.
,
2007
, “
Application of Reliability-Based Topology Optimization for Microelectromechanical Systems
,”
AIAA J.
,
45
(
12
), pp.
2926
2934
.
21.
Frangopol
,
D. M.
, and
Maute
,
K.
,
2003
, “
Life-Cycle Reliability-Based Optimization of Civil and Aerospace Structures
,”
Comput. Struct.
,
81
(
7
), pp.
397
410
.
22.
Manley
,
J. E.
,
2008
, “
Unmanned Surface Vehicles, 15 Years of Development
,”
In OCEANS 2008
,
Quebec City, Canada
,
Sep. 15–18
, IEEE, pp.
1
4
.
23.
Yan
,
R.-j.
,
Pang
,
S.
,
Sun
,
H.-b.
, and
Pang
,
Y.-j.
,
2010
, “
Development and Missions of Unmanned Surface Vehicle
,”
J. Mar. Sci. Appl.
,
9
(
4
), pp.
451
457
.
24.
The MathWorks Inc
.,
2022
.
MATLAB Version: 9.13.0 (R2022b), Natick, MA
. https://www.mathworks.com.
25.
Ellefsen
,
A. L.
,
Æsøy
,
V.
,
Ushakov
,
S.
, and
Zhang
,
H.
,
2019
, “
A Comprehensive Survey of Prognostics and Health Management Based on Deep Learning for Autonomous Ships
,”
IEEE Trans. Reliab.
,
68
(
2
), pp.
720
740
.
26.
Seatemperature Info
,
2023
.
World Sea Water Temperatures
, https://seatemperature.info/.
27.
Weather Spark
,
2023
.
Climate Reports With the Weather by Month, Day, Even Hour
. https://weatherspark.com/.
28.
The Pandas Development Team
,
2020
.
pandas-dev/pandas: Pandas
,
2
.
29.
Harris
,
C. R.
,
Millman
,
K. J.
,
van der Walt
,
S. J.
,
Gommers
,
R.
,
Virtanen
,
P.
,
Cournapeau
,
D.
,
Wieser
,
E.
, et al.,
2020
, “
Array Programming With NumPy
,”
Nature
,
585
(
7825
), pp.
357
362
.
30.
Nogueira
,
F.
,
2023
,
Bayesian Optimization: Open Source (Github) Constrained Global Optimization Tool for Python
.
31.
Kökkülünk
,
G.
,
Parlak
,
A.
, and
Erdem
,
H. H.
,
2016
, “
Determination of Performance Degradation of a Marine Diesel Engine by Using Curve Based Approach
,”
Appl. Therm. Eng.
,
108
, pp.
1136
1146
.
32.
Ouadha
,
A.
, and
El-Gotni
,
Y.
,
2013
, “
Integration of an Ammonia-Water Absorption Refrigeration System With a Marine Diesel Engine: A Thermodynamic Study
,”
Proc. Comput. Sci.
,
19
, pp.
754
761
.
33.
Time and Date AS
,
2023
.
Climate & Weather Averages in San Diego, CA
. https://www.timeanddate.com/weather/usa/san-diego.
34.
Scripps Institution of Oceanography
,
2023
.
Voyager: How Long Until Ocean Temperature Goes Up a Few More Degrees?
. https://scripps.ucsd.edu/news.
35.
Chesley
,
J. C.
,
1998
,
Handbook of Reliability Prediction Procedures for Mechanical Equipment
,
Naval Surface Warfare Center (NSWC) Carderock Division, Logistics Engineering Technology Branch
,
Bethesda, MD
.
36.
SINTEF
,
2015
,
Offshore Reliability Data Handbook
, 6th ed.,
OREDA Participants, Det Norske Veritas (DNV)
.
37.
BayesFusion, LLC
,
2022
. “
Genie Modeler
”. User Manual. https://support.bayesfusion.com/docs/GeNIe.pdf.
38.
Ruijters
,
E.
, and
Stoelinga
,
M.
,
2015
, “
Fault Tree Analysis: A Survey of the State-of-the-Art in Modeling, Analysis and Tools
,”
Comput. Sci. Rev.
,
15
, pp.
29
62
.
39.
David
,
M.
,
William
,
F.
, and
John
,
R.
,
2016
,
Nonelectronic Parts Reliability Data (NPRD)
,
Reliability Information Analysis Center
,
Utica, NY
.
40.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design Via Surrogate Modelling: a Practical Guide
,
John Wiley
,
Wiltshire, UK
.
41.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
, et al.,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.
42.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
(1st ed.,
Wiley-Interscience Series in Systems and Optimization
),
John Wiley & Sons
,
New York
.
43.
Blank
,
J.
, and
Deb
,
K.
,
2020
, “
pymoo: Multi-objective Optimization in Python
,”
IEEE Access
,
8
, pp.
89497
89509
.
44.
Frazier
,
P. I.
,
2018
, “Bayesian Optimization’,” In
Recent Advances in Optimization and Modeling of Contemporary Problems
,
Presented atthe INFORMS Annual Meeting
,
Phoenix, AZ
,
Nov. 4–7
,
Informs
, pp.
255
278
.
You do not currently have access to this content.