Abstract

Global Sensitivity Analysis (GSA) is the study of the influence of any given input on the outputs of a model. In the context of engineering design, GSA has been widely used to understand both individual and collective contributions of design variables on the design objectives. So far, global sensitivity studies have often been limited to design spaces with only quantitative (numerical) design variables. However, many engineering systems also contain, if not only, qualitative (categorical) design variables in addition to quantitative design variables. In this paper, we integrate Latent Variable Gaussian Process (LVGP) with Sobol’ analysis to develop the first metamodel-based mixed-variable GSA method. Through numerical case studies, we validate and demonstrate the effectiveness of our proposed method for mixed-variable problems. Furthermore, while the proposed GSA method is general enough to benefit various engineering design applications, we integrate it with multi-objective Bayesian optimization (BO) to create a sensitivity-aware design framework in accelerating the Pareto front design exploration for metal-organic framework (MOF) materials with many-level combinatorial design spaces. Although MOFs are constructed only from qualitative variables that are notoriously difficult to design, our method can utilize sensitivity analysis to navigate the optimization in the many-level large combinatorial design space, greatly expediting the exploration of novel MOF candidates.

References

1.
Saltelli
,
A.
,
Tarantola
,
S.
,
Campolongo
,
F.
, and
Ratto
,
M.
,
2004
,
Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models
,
Wiley Online Library
,
New York
.
2.
Morio
,
J.
,
2011
, “
Global and Local Sensitivity Analysis Methods for a Physical System
,”
Eur. J. Phys.
,
32
(
6
), pp.
1577
1583
.
3.
Iooss
,
B.
, and
Lemaître
,
P.
,
2015
, “A Review on Global Sensitivity Analysis Methods,”
Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications
,
G.
Dellino
, and
C.
Meloni
, eds.,
Springer US
,
Boston, MA
, pp.
101
122
.
4.
Saltelli
,
A.
,
Chan
,
K.
, and
Scott
,
E. M.
,
2001
,
Sensitivity Analysis
,
Wiley
,
New York
.
5.
Cukier
,
R. I.
,
Fortuin
,
C. M.
,
Shuler
,
K. E.
,
Petschek
,
A. G.
, and
Schaibly
,
J. H.
,
2003
, “
Study of the Sensitivity of Coupled Reaction Systems to Uncertainties in Rate Coefficients. I Theory
,”
J. Chem. Phys.
,
59
(
8
), pp.
3873
3878
.
6.
Borgonovo
,
E.
, and
Plischke
,
E.
,
2016
, “
Sensitivity Analysis: A Review of Recent Advances
,”
Eur. J. Oper. Res.
,
248
(
3
), pp.
869
887
.
7.
Lo Piano
,
S.
,
Ferretti
,
F.
,
Puy
,
A.
,
Albrecht
,
D.
, and
Saltelli
,
A.
,
2021
, “
Variance-Based Sensitivity Analysis: The Quest for Better Estimators and Designs Between Explorativity and Economy
,”
Reliab. Eng. Syst. Saf.
,
206
, p.
107300
.
8.
Chan
,
K.
,
Saltelli
,
A.
, and
Tarantola
,
S.
,
1997
, “
Sensitivity Analysis Of Model Output: Variance-Based Methods Make The Difference
,”
Proceedings of the Winter Simulation Conference Proceedings
,
Atlanta, GA
, pp.
261
268
.
9.
Norton
,
J.
,
2015
, “
An Introduction to Sensitivity Assessment of Simulation Models
,”
Environ. Modell. Softw.
,
69
, pp.
166
174
.
10.
Sobol′
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1
), pp.
271
280
.
11.
Marrel
,
A.
,
Iooss
,
B.
,
Laurent
,
B.
, and
Roustant
,
O.
,
2009
, "
Calculations of Sobol Indices for the Gaussian Process Metamodel
,"
Reliab. Eng. Syst. Saf.
,
94
(
3
), pp.
742
751
.
12.
Saltelli
,
A.
,
Annoni
,
P.
,
Azzini
,
I.
,
Campolongo
,
F.
,
Ratto
,
M.
, and
Tarantola
,
S.
,
2010
, “
Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the Total Sensitivity Index
,”
Comput. Phys. Commun
,
181
(
2
), pp.
259
270
.
13.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
,
2004
, “
Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
875
886
.
14.
Zhang
,
Y.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2020
, “
Bayesian Optimization for Materials Design With Mixed Quantitative and Qualitative Variables
,”
Sci. Rep.
,
10
(
1
), pp.
4924
.
15.
Wang
,
Y.
,
Iyer
,
A.
,
Chen
,
W.
, and
Rondinelli
,
J. M.
,
2020
, “
Featureless Adaptive Optimization Accelerates Functional Electronic Materials Design
,"
Appl. Phys. Rev.
,
7
(
4
), pp.
041403
.
16.
Zhang
,
Y.
,
Tao
,
S.
,
Chen
,
W.
, and
Apley
,
D. W.
,
2020
, “
A Latent Variable Approach to Gaussian Process Modeling With Qualitative and Quantitative Factors
,”
Technometrics
,
62
(
3
), pp.
291
302
.
17.
Saltelli
,
A.
,
Tarantola
,
S.
, and
Campolongo
,
F.
,
2000
, “
Sensitivity Analysis as an Ingredient of Modeling
,”
Stat. Sci.
,
15
(
4
), pp.
377
395
.
18.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2005
,
Gaussian Processes for Machine Learning
,
The MIT Press
,
Cambridge, MA
.
19.
Azzini
,
I.
, and
Rosati
,
R.
,
2022
, “
A Function Dataset for Benchmarking in Sensitivity Analysis
,”
Data Brief
,
42
, p.
108071
.
20.
Ishigami
,
T.
, and
Homma
,
T.
,
1990
, “
An Importance Quantification Technique in Uncertainty Analysis for Computer Models
,”
Proceedings of the First International Symposium on Uncertainty Modeling and Analysis
,
College Park, MD
, pp.
398
403
.
21.
Caflisch
,
R. E.
,
1998
, “
Monte Carlo and Quasi-Monte Carlo Methods
,”
Acta Numerica
,
7
, pp.
1
49
.
22.
Li
,
H.
,
Wang
,
K.
,
Sun
,
Y.
,
Lollar
,
C. T.
,
Li
,
J.
, and
Zhou
,
H.-C.
,
2018
, “
Recent Advances in Gas Storage and Separation Using Metal–Organic Frameworks
,”
Mater. Today
,
21
(
2
), pp.
108
121
.
23.
Shah
,
M.
,
McCarthy
,
M. C.
,
Sachdeva
,
S.
,
Lee
,
A. K.
, and
Jeong
,
H.-K.
,
2012
, “
Current Status of Metal–Organic Framework Membranes for Gas Separations: Promises and Challenges
,”
Ind. Eng. Chem. Res
,
51
(
5
), pp.
2179
2199
.
24.
Freund
,
R.
,
Zaremba
,
O.
,
Arnauts
,
G.
,
Ameloot
,
R.
,
Skorupskii
,
G.
,
Dincă
,
M.
,
Bavykina
,
A.
, et al
,
2021
, “
The Current Status of MOF and COF Applications
,”
Angew. Chem. Int. Ed.
,
60
(
45
), pp.
23975
24001
.
25.
Comlek
,
Y.
,
Pham
,
T. D.
,
Snurr
,
R. Q.
, and
Chen
,
W.
,
2023
, “
Rapid Design of Top-Performing Metal-Organic Frameworks With Qualitative Representations of Building Blocks
,”
npj Comput. Mater.
,
9
(
1
), pp.
170
.
26.
Qian
,
Q.
,
Asinger
,
P. A.
,
Lee
,
M. J.
,
Han
,
G.
,
Mizrahi Rodriguez
,
K.
,
Lin
,
S.
,
Benedetti
,
F. M.
,
Wu
,
A. X.
,
Chi
,
W. S.
, and
Smith
,
Z. P.
,
2020
, “
MOF-Based Membranes for Gas Separations
,”
Chem. Rev.
,
120
(
16
), pp.
8161
8266
.
27.
Censor
,
Y.
,
1977
, “
Pareto Optimality in Multiobjective Problems
,”
Appl. Math. Optim.
,
4
(
1
), pp.
41
59
.
28.
Ba
,
S.
,
Myers
,
W. R.
, and
Brenneman
,
W. A.
,
2015
, “
Optimal Sliced Latin Hypercube Designs
,”
Technometrics
,
57
(
4
), pp.
479
487
.
29.
Jones
,
D. R.
,
2001
, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,”
J. Global Optim.
,
21
(
4
), pp.
345
383
.
You do not currently have access to this content.