Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Intelligent systems have been rapidly evolving and play a pivotal role in assisting individuals across diverse domains, from healthcare to transportation. Understanding the dynamics of human–artificial intelligence (AI) partnering, particularly how humans trust and collaborate with intelligent systems, is becoming increasingly critical to design effective systems. This paper presents an experimental analysis to assess the impact of AI design attributes on users’ trust, workload, and performance when solving classification problems supported by an AI assistant. Specifically, we study the effect of transparency, fairness, and robustness in the design of an AI assistant and analyze the role of participants’ gender and education background on the outcomes. The experiment is conducted with 47 students in undergraduate, master’s, and Ph.D. programs using a drawing game application where the users are asked to recognize incomplete sketches revealed progressively while receiving recommendations from multiple versions of an AI assistant. The results show that when collaborating with the AI, participants achieve a higher performance than their individual performance or the performance of the AI. The results also show that gender does not have an impact on users’ trust and performance when collaborating with different versions of the AI system, whereas education level has a significant impact on the participants’ performance but not on trust. Finally, the impact of design attributes on participants’ trust and performance highly depends on the accuracy of the AI recommendations, and improvements in participants’ performance and trust in some cases come at the expense of increased workload.

References

1.
Asan
,
O.
,
Bayrak
,
A. E.
, and
Choudhury
,
A.
,
2020
, “
Artificial Intelligence and Human Trust in Healthcare: Focus on Clinicians
,”
J. Med. Int. Res.
,
22
(
6
), p.
e15154
.
2.
Bayrak
,
A. E.
,
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2021
, “
A Strategic Decision-Making Architecture Toward Hybrid Teams for Dynamic Competitive Problems
,”
Decis. Supp. Syst.
,
144
, p.
113490
.
3.
Saadi
,
J. I.
, and
Yang
,
M. C.
,
2023
, “
Generative Design: Reframing the Role of the Designer in Early-Stage Design Process
,”
ASME J. Mech. Des.
,
145
(
4
), p.
041411
.
4.
Chaudhari
,
A. M.
, and
Selva
,
D.
,
2023
, “
Evaluating Designer Learning and Performance in Interactive Deep Generative Design
,”
ASME J. Mech. Des.
,
145
(
5
), p.
051403
.
5.
Song
,
B.
,
Soria Zurita
,
N. F.
,
Nolte
,
H.
,
Singh
,
H.
,
Cagan
,
J.
, and
McComb
,
C.
,
2022
, “
When Faced With Increasing Complexity: The Effectiveness of Artificial Intelligence Assistance for Drone Design
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021701
.
6.
Gyory
,
J. T.
,
Stump
,
G.
,
Nolte
,
H.
, and
Cagan
,
J.
,
2024
, “
Adaptation Through Communication: Assessing Human-Artificial Intelligence Partnership for the Design of Complex Engineering Systems
,”
ASME J. Mech. Des.
,
146
(
8
), p.
081401
.
7.
Parasuraman
,
R.
, and
Riley
,
V.
,
1997
, “
Humans and Automation: Use, Misuse, Disuse, Abuse
,”
Human Fact.
,
39
(
2
), pp.
230
253
.
8.
Lee
,
J. D.
, and
Moray
,
N.
,
1994
, “
Trust, Self-Confidence, and Operators’ Adaptation to Automation
,”
Int. J. Hum-Comput. Stud.
,
40
(
1
), pp.
153
184
.
9.
Deng
,
M.
,
Chen
,
J.
,
Wu
,
Y.
,
Ma
,
S.
,
Li
,
H.
,
Yang
,
Z.
, and
Shen
,
Y.
,
2024
, “
Using Voice Recognition to Measure Trust During Interactions With Automated Vehicles
,”
Appl. Ergon.
,
116
, p.
104184
.
10.
Lotfalian Saremi
,
M.
, and
Bayrak
,
A. E.
,
2021
, “
A Survey of Important Factors in Human- Artificial Intelligence Trust for Engineering Design
,” The ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. Virtual, Paper No: DETC2021-70550.
11.
Wright
,
J. L.
,
Chen
,
J. Y.
, and
Lakhmani
,
S. G.
,
2019
, “
Agent Transparency and Reliability in Human-Robot Interaction: The Influence on User Confidence and Perceived Reliability
,”
IEEE Trans. Human-Mach. Syst.
,
50
(
3
), pp.
254
263
.
12.
Mehrabi
,
N.
,
Morstatter
,
F.
,
Saxena
,
N.
,
Lerman
,
K.
, and
Galstyan
,
A.
,
2019
, “
A Survey on Bias and Fairness in Machine Learning
,”
ACM Comput. Surv. (CSUR)
,
54
(
6
), p.
115
.
13.
Guo
,
A.
,
Kamar
,
E.
,
Vaughan
,
J. W.
,
Wallach
,
H.
, and
Morris
,
M. R.
,
2019
, “
Toward Fairness in AI for People with Disabilities: A Research Roadmap
,”
ACM SIGACCESS Accessibility and Computing
,
125
, p.
2
.
14.
Venkatesh
,
V.
,
Morris
,
M. G.
, and
Ackerman
,
P. L.
,
2000
, “
A Longitudinal Field Investigation of Gender Differences in Individual Technology Adoption Decision-Making Processes
,”
Organ. Behav. Human Decis. Process.
,
83
(
1
), pp.
33
60
.
15.
Li
,
S.
,
Glass
,
R.
, and
Records
,
H.
,
2008
, “
The Influence of Gender on New Technology Adoption and Use-Mobile Commerce
,”
J. Inter. Comm.
,
7
(
2
), pp.
270
289
.
16.
Felzmann
,
H.
,
Fosch-Villaronga
,
E.
,
Lutz
,
C.
, and
Tamo-Larrieux
,
A.
,
2019
, “
Robots and Transparency: The Multiple Dimensions of Transparency in the Context of Robot Technologies
,”
IEEE Rob. Autom. Mag.
,
26
(
2
), pp.
71
78
.
17.
Marangunić
,
N.
, and
Granić
,
A.
,
2015
, “
Technology Acceptance Model: A Literature Review From 1986 to 2013
,”
Univ. Access Infor. Soc.
,
14
, pp.
81
95
.
18.
Liu
,
K.
,
Or
,
C. K.
,
So
,
M.
,
Cheung
,
B.
,
Chan
,
B.
,
Tiwari
,
A.
, and
Tan
,
J.
,
2022
, “
A Longitudinal Examination of Tablet Self-Management Technology Acceptance by Patients With Chronic Diseases: Integrating Perceived Hand Function, Perceived Visual Function, and Perceived Home Space Adequacy With the TAM and TPB
,”
Appl. Ergon.
,
100
, p.
103667
.
19.
Goodhue
,
D. L.
, and
Thompson
,
R. L.
,
1995
, “
Task-Technology Fit and Individual Performance
,”
MIS Q.
,
19
(
2
), pp.
213
236
.
20.
Dishaw
,
M. T.
, and
Strong
,
D. M.
,
1999
, “
Extending the Technology Acceptance Model With Task–Technology Fit Constructs
,”
Inf. Manage.
,
36
(
1
), pp.
9
21
.
21.
Ajzen
,
I.
,
1991
, “
The Theory of Planned Behavior
,”
Organ. Behav. Human Decis. Process.
,
50
(
2
), pp.
179
211
.
22.
Conner
,
M.
,
2020
, “Theory of Planned Behavior,”
Handbook of Sport Psychology
, 4th ed.,
G.
Tenenbaum
, and
R. C.
Eklund
, eds.,
John Wiley & Sons, Ltd
,
Hoboken, NJ
, pp.
1
18
.
23.
McKnight
,
D. H.
, and
Chervany
,
N. L.
,
2000
, “
What Is Trust? A Conceptual Analysis and an Interdisciplinary Model
,”
Americas Conference on Information Systems (AMCIS)
,
Long Beach, CA
,
Aug. 10–13
, pp.
827
833
.
24.
Lewis
,
J. D.
, and
Weigert
,
A.
,
1985
, “
Trust as a Social Reality
,”
Soc. Forces
,
63
(
4
), pp.
967
985
.
25.
Shapiro
,
S. P.
,
1987
, “
The Social Control of Impersonal Trust
,”
Am. J. Sociol.
,
93
(
3
), pp.
623
658
.
26.
Mayer
,
R. C.
,
Davis
,
J. H.
, and
Schoorman
,
F. D.
,
1995
, “
An Integrative Model of Organizational Trust
,”
Acad. Manage. Rev.
,
20
(
3
), pp.
709
734
.
27.
Mcknight
,
D. H.
,
Carter
,
M.
,
Thatcher
,
J. B.
, and
Clay
,
P. F.
,
2011
, “
Trust in a Specific Technology: An Investigation of Its Components and Measures
,”
ACM Trans. Manage. Inf. Syst. (TMIS)
,
2
(
2
), pp.
1
25
.
28.
Aljazzaf
,
Z. M.
,
Perry
,
M.
, and
Capretz
,
M. A.
,
2010
, “
Online Trust: Definition and Principles
,”
Fifth International Multi-conference on Computing in the Global Information Technology
,
Valencia, Spain
,
Sept. 20–25
,
IEEE
, pp.
163
168
.
29.
Ghazizadeh
,
M.
,
Lee
,
J. D.
, and
Boyle
,
L. N.
,
2012
, “
Extending the Technology Acceptance Model to Assess Automation
,”
Cog. Technol. Work
,
14
(
1
), pp.
39
49
.
30.
Hoff
,
K. A.
, and
Bashir
,
M.
,
2015
, “
Trust in Automation: Integrating Empirical Evidence on Factors That Influence Trust
,”
Human Fact.
,
57
(
3
), pp.
407
434
.
31.
Riedl
,
R.
, and
Javor
,
A.
,
2012
, “
The Biology of Trust: Integrating Evidence From Genetics, Endocrinology, and Functional Brain Imaging.
,”
J. Neurosci. Psychol. Econ.
,
5
(
2
), p.
63
.
32.
Madhavan
,
P.
, and
Wiegmann
,
D. A.
,
2004
, “
A New Look at the Dynamics of Human-Automation Trust: Is Trust in Humans Comparable to Trust in Machines?
Proc. Hum. Factors Ergon. Soc. Annu. Meet.
,
48
(
3
), pp.
581
585
.
33.
Siau
,
K.
, and
Wang
,
W.
,
2018
, “
Building Trust in Artificial Intelligence, Machine Learning, and Robotics
,”
Cutter Bus. Technol. J.
,
31
(
2
), pp.
47
53
.
34.
McClumpha
,
A.
,
James
,
M.
,
Green
,
R.
, and
Belyavin
,
A.
,
1991
, “
Pilots’ Attitudes to Cockpit Automation
,”
Proc. Hum. Factors Ergon. Soc. Annu. Meet.
,
35
(
2
), pp.
107
111
.
35.
Araujo
,
T.
,
Helberger
,
N.
,
Kruikemeier
,
S.
, and
De Vreese
,
C. H.
,
2020
, “
In AI We Trust? Perceptions About Automated Decision-Making by Artificial Intelligence
,”
AI Soc.
,
35
, pp.
1
13
.
36.
Lotfalian Saremi
,
M.
, and
Bayrak
,
A. E.
,
2022
, “
Agent-Based Simulation of Optimal Trust in a Decision Support System in One-on-One Collaboration
,” The ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference,
St. Louis, MO
, Paper No. DETC2021-87388.
37.
Chong
,
L.
,
Raina
,
A.
,
Goucher-Lambert
,
K.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2023
, “
The Evolution and Impact of Human Confidence in Artificial Intelligence and in Themselves on AI-Assisted Decision-Making in Design
,”
ASME J. Mech. Des.
,
145
(
3
), p.
031401
.
38.
Chong
,
L.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2024
, “
Human Designers’ Dynamic Confidence and Decision-Making When Working With More Than One AI
,”
ASME J. Mech. Des.
,
146
(
8
), p.
081402
.
39.
Beller
,
J.
,
Heesen
,
M.
, and
Vollrath
,
M.
,
2013
, “
Improving the Driver–Automation Interaction: An Approach Using Automation Uncertainty
,”
Human Fact.
,
55
(
6
), pp.
1130
1141
.
40.
Brown
,
T. M.
, and
Miller
,
C. E.
,
2000
, “
Communication Networks in Task-Performing Groups: Effects of Task Complexity, Time Pressure, and Interpersonal Dominance
,”
Small Group Res.
,
31
(
2
), pp.
131
157
.
41.
Williams
,
T. M.
,
1999
, “
The Need for New Paradigms for Complex Projects
,”
Int. J. Proj. Manage.
,
17
(
5
), pp.
269
273
.
42.
Lee
,
J. D.
, and
See
,
K. A.
,
2004
, “
Trust in Automation: Designing for Appropriate Reliance
,”
Human Fact.
,
46
(
1
), pp.
50
80
.
43.
Rempel
,
J. K.
,
Holmes
,
J. G.
, and
Zanna
,
M. P.
,
1985
, “
Trust in Close Relationships
,”
J. Person. Soc. Psychol.
,
49
(
1
), p.
95
.
44.
Biros
,
D. P.
,
Daly
,
M.
, and
Gunsch
,
G.
,
2004
, “
The Influence of Task Load and Automation Trust on Deception Detection
,”
Group Decis. Negot.
,
13
(
2
), pp.
173
189
.
45.
Schmidt
,
P.
, and
Biessmann
,
F.
,
2020
, “
Calibrating Human-AI Collaboration: Impact of Risk, Ambiguity and Transparency on Algorithmic Bias
,”
4th International Cross-Domain Conference for Machine Learning and Knowledge Extraction (CD-MAKE)
,
Dublin, Ireland
,
Aug. 25–28
,
Springer, pp. 431–449
.
46.
Zhang
,
G.
,
Raina
,
A.
,
Brownell
,
E.
, and
Cagan
,
J.
,
2023
, “
Artificial Intelligence Impersonating a Human: The Impact of Design Facilitator Identity on Human Designers
,”
ASME J. Mech. Des.
,
145
(
5
), p.
051404
.
47.
Gutman
,
D.
,
Olatunji
,
S. A.
,
Markfeld
,
N.
,
Givati
,
S.
,
Sarne-Fleischmann
,
V.
,
Oron-Gilad
,
T.
, and
Edan
,
Y.
,
2023
, “
Evaluating Levels of Automation With Different Feedback Modes in an Assistive Robotic Table Clearing Task for Eldercare
,”
Appl. Ergon.
,
106
, p.
103859
.
48.
Felzmann
,
H.
,
Fosch-Villaronga
,
E.
,
Lutz
,
C.
, and
Tamò-Larrieux
,
A.
,
2020
, “
Towards Transparency by Design for Artificial Intelligence
,”
Sci. Eng. Ethics
,
26
(
6
), pp.
3333
3361
.
49.
Meijer
,
A.
,
2014
, “Transparency,”
The Oxford Handbook of Public Accountability
, 1st ed.,
M.
Bovens
,
R.
Goodin
, and
T.
Schillemans
, eds.,
Oxford University Press
,
Oxford, UK
, p.
507
.
50.
Miller
,
T.
,
2019
, “
Explanation in Artificial Intelligence: Insights From the Social Sciences
,”
Artif. Intell.
,
267
, pp.
1
38
.
51.
Castelnovo
,
A.
,
Crupi
,
R.
,
Greco
,
G.
,
Regoli
,
D.
,
Penco
,
I. G.
, and
Cosentini
,
A. C.
,
2022
, “
A Clarification of the Nuances in the Fairness Metrics Landscape
,”
Sci. Rep.
,
12
(
1
), p.
4209
.
52.
Mourelatos
,
Z. P.
, and
Liang
,
J.
,
2005
, “
A Methodology for Trading-Off Performance and Robustness Under Uncertainty
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
856
863
.
53.
Rauber
,
J.
,
Zimmermann
,
R.
,
Bethge
,
M.
, and
Brendel
,
W.
,
2020
, “
Foolbox Native: Fast Adversarial Attacks to Benchmark the Robustness of Machine Learning Models in PyTorch, Tensorflow, and JAX
,”
J. Open Sourc. Softw.
,
5
(
53
), p.
2607
.
54.
Taori
,
R.
,
Dave
,
A.
,
Shankar
,
V.
,
Carlini
,
N.
,
Recht
,
B.
, and
Schmidt
,
L.
,
2020
, “
Measuring Robustness to Natural Distribution Shifts in Image Classification
,”
Adv. Neural Inf. Process. Syst.
,
33
, pp.
18583
18599
.
55.
Papenmeier
,
A.
,
Englebienne
,
G.
, and
Seifert
,
C.
,
2019
, “
How Model Accuracy and Explanation Fidelity Influence User Trust in AI
,”
IJCAI Workshop on Explainable Artificial Intelligence (XAI)
,
Macau, China
,
Aug. 11
, pp.
94
100
.
56.
McGuirl
,
J. M.
, and
Sarter
,
N. B.
,
2006
, “
Supporting Trust Calibration and the Effective Use of Decision Aids by Presenting Dynamic System Confidence Information
,”
Human Fact.
,
48
(
4
), pp.
656
665
.
57.
Schmidt
,
P.
,
Biessmann
,
F.
, and
Teubner
,
T.
,
2020
, “
Transparency and Trust in Artificial Intelligence Systems
,”
J. Decis. Syst.
,
29
(
4
), pp.
260
278
.
58.
Zhou
,
J.
,
Verma
,
S.
,
Mittal
,
M.
, and
Chen
,
F.
,
2021
, “
Understanding Relations Between Perception of Fairness and Trust in Algorithmic Decision Making
,”
8th International Conference on Behavioral and Social Computing (BESC)
,
Doha, Qatar
,
Oct. 29–31
, IEEE, pp.
1
5
.
59.
Angerschmid
,
A.
,
Zhou
,
J.
,
Theuermann
,
K.
,
Chen
,
F.
, and
Holzinger
,
A.
,
2022
, “
Fairness and Explanation in AI-Informed Decision Making
,”
Mach. Learn. Knowl. Extract.
,
4
(
2
), pp.
556
579
.
60.
Lee
,
M. K.
, and
Rich
,
K.
,
2021
, “
Who Is Included in Human Perceptions of AI?: Trust and Perceived Fairness Around Healthcare AI and Cultural Mistrust
,”
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
,
Yokohama, Japan
,
May 8–13
, pp.
1
14
.
61.
Wang
,
B.
,
Zhou
,
J.
,
Li
,
Y.
, and
Chen
,
F.
,
2023
, “
Impact of Fidelity and Robustness of Machine Learning Explanations on User Trust
,”
36th Australasian Joint Conference on Artificial Intelligence
,
Brisbane, Australia
,
Nov. 28–Dec. 1
, Springer, pp.
209
220
.
62.
Li
,
B.
,
Qi
,
P.
,
Liu
,
B.
,
Di
,
S.
,
Liu
,
J.
,
Pei
,
J.
,
Yi
,
J.
, and
Zhou
,
B.
,
2023
, “
Trustworthy AI: From Principles to Practices
,”
ACM Comput. Surv.
,
55
(
9
), pp.
1
46
.
63.
Plotly, 2012. Dash-Plotly.
64.
Google, 2018. Google Quickdraw Dataset.
65.
Springer
,
A.
, and
Whittaker
,
S.
,
2019
, “
Progressive Disclosure: Empirically Motivated Approaches to Designing Effective Transparency
,”
24th International Conference on Intelligent User Interfaces
,
Marina del Ray, CA
,
Mar. 17–20
, pp.
107
120
.
66.
Gill
,
H. S.
, and
Khehra
,
B. S.
,
2022
, “
An Integrated Approach Using CNN-RNN-LSTM for Classification of Fruit Images
,”
Mater. Today: Proc.
,
51
(
1
), pp.
591
595
.
67.
Muhuri
,
P. S.
,
Chatterjee
,
P.
,
Yuan
,
X.
,
Roy
,
K.
, and
Esterline
,
A.
,
2020
, “
Using a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) to Classify Network Attacks
,”
Information
,
11
(
5
), p.
243
.
68.
Sakinah
,
N.
,
Tahir
,
M.
,
Badriyah
,
T.
, and
Syarif
,
I.
,
2019
, “
LSTM With ADAM Optimization-Powered High Accuracy Preeclampsia Classification
,”
International Electronics Symposium (IES)
,
Surabaya, Indonesia
,
Sept. 27–28
,
IEEE, pp. 314–319
.
69.
Hart
,
S. G.
, and
Staveland
,
L. E.
,
1988
, “Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research,”
Human Mental Workload
,
P. A.
Hancock
, and
N.
Meshkati
, eds.,
Elsevier
,
North-Holland
, pp.
139
183
.
You do not currently have access to this content.