Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The lightweight design of hydraulic equipment has always been of vital interest. Additive manufacturing (AM) technology can meet the manufacturing requirements of heteroideus and lightweight hydraulic equipment. However, traditional layout optimization often cannot satisfy the functional constraints of hydraulic components. This article proposes a design method of function-based automatic layout optimization for hydraulic components to solve this problem. The proposed method combines multi-component layout optimization with flow-up channel path planning and uses the triangular mesh model of hydraulic components directly as layout units. The spatial pose of the layout unit is used as the gene sequence for a genetic algorithm (GA). To meet the functional constraints, this study also proposes a fast, accurate collision detection algorithm for irregular 3D models and the generating strategy for follow-up flow channels. Here, the volume of the layout units, the total centroid radius of the layout plan, the length of flow channels, and the pressure loss are taken as the objective functions, and an automatic layout optimization algorithm for hydraulic components is developed. By optimizing the initial layout plan of an aviation electro-hydrostatic actuator (EHA), the characteristic volume of the optimized layout is reduced by 30.68% and the total length of the flow channels is decreased by 39.53%, demonstrating the efficiency of this method for lightweight hydraulic equipment design.

References

1.
Du
,
B.
,
Li
,
Q. C.
,
Zheng
,
C. Q.
,
Wang
,
S. Z.
,
Gao
,
C.
, and
Chen
,
L. L.
,
2023
, “
Application of Lightweight Structure in Automobile Bumper Beam: A Review
,”
Materials.
,
16
(
3
), pp.
1
25
.
2.
Wang
,
W. J.
,
Tang
,
F.
,
Zheng
,
C.
,
Xie
,
T.
,
Ma
,
C. Y.
, and
Zhang
,
Y. C.
,
2022
, “
Prototyping a Novel Compact 3-DOF Hydraulic Robotic Actuator via Metallic Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
17
(
3
), pp.
617
630
.
3.
Guo
,
H. W.
,
Zhou
,
M. M.
,
Li
,
P. F.
,
Lv
,
M.
, and
Zhang
,
Y. F.
,
2022
, “
Prospects of Carbon Fiber Composites Applications in Hydraulic Supports
,”
Front. Mater.
,
9
, pp.
1
5
.
4.
Diegel
,
O.
,
Schutte
,
J.
,
Ferreira
,
A.
, and
Chan
,
Y. L.
,
2020
, “
Design for Additive Manufacturing Process for a Lightweight Hydraulic Manifold
,”
Addit. Manuf.
,
36
.
5.
Zhang
,
C.
,
Wang
,
S.
,
Li
,
J.
,
Zhu
,
Y.
,
Peng
,
T.
, and
Yang
,
H. Y.
,
2020
, “
Additive Manufacturing of Products With Functional Fluid Channels: A Review
,”
Addit. Manuf.
,
36
.
6.
Xiong
,
Y.
,
Tang
,
Y.
,
Kim
,
S.
, and
Rosen
,
D. W.
,
2023
, “
Human-Machine Collaborative Additive Manufacturing
,”
J. Manuf. Syst.
,
66
, pp.
82
91
.
7.
Ali
,
M.
,
Sajjad
,
U.
,
Hussain
,
I.
,
Abbas
,
N.
,
Ali
,
H. M.
,
Yan
,
W.-M.
, and
Wang
,
C.-C.
,
2022
, “
On the Assessment of the Mechanical Properties of Additively Manufactured Lattice Structures
,”
Eng. Anal. Bound. Elem.
,
142
, pp.
93
116
.
8.
Yang
,
S.
, and
Zhao
,
Y. F.
,
2015
, “
Additive Manufacturing-Enabled Design Theory and Methodology: a Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1–4
), pp.
327
342
.
9.
Renjith
,
S. C.
,
Park
,
K.
, and
Kremer
,
G. E. O.
,
2020
, “
A Design Framework for Additive Manufacturing: Integration of Additive Manufacturing Capabilities in the Early Design Process
,”
Int. J. Precis. Eng. Manuf.
,
21
(
2
), pp.
329
345
.
10.
Chekurov
,
S.
, and
Lantela
,
T.
,
2017
, “
Selective Laser Melted Digital Hydraulic Valve System
,”
3d. Print. Addit. Manuf.
,
4
(
4
), pp.
215
221
.
11.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “
(Re)Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
.
12.
Hofmann
,
U.
,
Fankhauser
,
M.
,
Willen
,
S.
,
Inniger
,
D.
,
Klahn
,
C.
,
Loffel
,
K.
, and
Meboldt
,
M.
,
2023
, “
Design of an Additively Manufactured Hydraulic Directional Spool Valve: an Industrial Case Study
,”
Virtual Phys. Prototyp.
,
18
(
1
), pp.
1
18
.
13.
Alshare
,
A. A.
,
Calzone
,
F.
, and
Muzzupappa
,
M.
,
2019
, “
Hydraulic Manifold Design via Additive Manufacturing Optimized With CFD and Fluid-Structure Interaction Simulations
,”
Rapid Prototyp. J.
,
25
(
9
), pp.
1516
1524
.
14.
Laverne
,
F.
,
Segonds
,
F.
,
Anwer
,
N.
, and
Le Coq
,
M.
,
2015
, “
Assembly Based Methods to Support Product Innovation in Design for Additive Manufacturing: An Exploratory Case Study
,”
ASME J. Mech. Des.
,
137
(
12
), p.
121701
.
15.
Tang
,
Y. L.
, and
Zhao
,
Y. F.
,
2016
, “
A Survey of the Design Methods for Additive Manufacturing to Improve Functional Performance
,”
Rapid Prototyp. J.
,
22
(
3
), pp.
569
590
.
16.
Yi
,
L.
,
Wu
,
X. Q.
,
Nawaz
,
A.
,
Glatt
,
M.
, and
Aurich
,
J. C.
,
2023
, “
Improving Energy Performance in the Product Design for Additive Manufacturing Using a Multi-Player Competition Algorithm
,”
J. Clean. Prod.
,
391
, pp.
1
22
.
17.
Jacobson
,
A.
,
2023
, “gptoolbox,” https://github.com/alecjacobson/gptoolbox
18.
Yang
,
Y. Z.
,
Li
,
H. C.
,
Zhang
,
K. X.
,
Jia
,
X. J.
,
Wang
,
G.
, and
Liu
,
B. S.
,
2023
, “
A 3D Nesting Method Based on the Convex-Concave Coding Similarity of the Voxelized Model for Additive Manufacturing
,”
Addit. Manuf.
,
64
, pp.
1
18
.
19.
M
,
B.
,
M
,
Z.
, and
R
,
C. A.
,
2020
, “
3D Facility Layout Problem
,”
J. Intell. Manuf.
,
32
(
4
), pp.
1065
1090
.
20.
Pankratov
,
A.
,
Romanova
,
T.
, and
Litvinchev
,
I.
,
2020
, “
Packing Oblique 3D Objects
,”
Mathematics.
,
8
(
7
), p.
1130
.
21.
Aladahalli
,
C.
,
Cagan
,
J.
, and
Shimada
,
K.
,
2007
, “
Objective Function Effect Based Pattern Search—Theoretical Framework Inspired by 3D Component Layout
,”
ASME J. Mech. Des.
,
129
(
3
), pp.
243
254
.
22.
Cherri
,
L. H.
,
Mundim
,
L. R.
,
Andretta
,
M.
,
Toledo
,
F. M. B.
,
Oliveira
,
J. F.
, and
Carravilla
,
M. A.
,
2016
, “
Robust Mixed-Integer Linear Programming Models for the Irregular Strip Packing Problem
,”
Eur. J. Oper. Res.
,
253
(
3
), pp.
570
583
.
23.
Pachon
,
J. C.
,
Martinez-Franco
,
J.
, and
Alvarez-Martinez
,
D.
,
2022
, “
SIC: An Intelligent Packing System With Industry-Grade Features
,”
SoftwareX
,
20
, p.
101241
.
24.
Romanova
,
T.
,
Bennell
,
J.
,
Stoyan
,
Y.
, and
Pankratov
,
A.
,
2018
, “
Packing of Concave Polyhedra With Continuous Rotations Using Nonlinear Optimisation
,”
Eur. J. Oper. Res.
,
268
(
1
), pp.
37
53
.
25.
Zheng
,
P. F.
,
Lou
,
J. J.
,
Lian
,
C. J.
,
Lin
,
D. J.
, and
An
,
Q.
,
2022
, “
A Generalized Collision Algorithm for Geometric Graphics
,”
Soft. Comput.
,
26
(
11
), pp.
4979
4989
.
26.
Grignon
,
P. M.
, and
Fadel
,
G. M.
,
2004
, “
A GA Based Configuration Design Optimization Method
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
6
15
.
27.
Zhang
,
Y. C.
,
Gupta
,
R. K.
, and
Bernard
,
A.
,
2016
, “
Two-Dimensional Placement Optimization for Multi-Parts Production in Additive Manufacturing
,”
Robot. Cim-Int. Manuf.
,
38
, pp.
102
117
.
28.
Romanova
,
T.
,
Litvinchev
,
I.
, and
Pankratov
,
A.
,
2020
, “
Packing Ellipsoids in an Optimized Cylinder
,”
Eur. J. Oper. Res.
,
285
(
2
), pp.
429
443
.
29.
Lu
,
Z. D.
,
Hu
,
K. X.
, and
Ng
,
T. S.
,
2023
, “
Improving Additive Manufacturing Production Planning: A Sub-Second Pixel-Based Packing Algorithm
,”
Comput. Ind. Eng.
,
181
, pp.
1
20
.
30.
Li
,
J.
,
Zhao
,
W.
,
Zhang
,
K.
,
Yu
,
M.
, and
Guo
,
X.
,
2023
, “
A Space Layout Design Model for Concept Generation Using Function-Based Spatial Planning and Structure Dynamic Deployment
,”
Adv. Eng. Inform.
,
56
, pp.
1
20
.
31.
Biedermann
,
M.
,
Beutler
,
P.
, and
Meboldt
,
M.
,
2021
, “
Automated Design of Additive Manufactured Flow Components With Consideration of Overhang Constraint
,”
Addit. Manuf.
,
46
, pp.
1
14
.
32.
Li
,
D. F.
,
Dai
,
N.
,
Wang
,
H. T.
, and
Zhang
,
F. J.
,
2023
, “
Mathematical Modeling Study of Pressure Loss in the Flow Channels of Additive Manufacturing Aviation Hydraulic Valves
,”
Energies
,
16
(
4
), pp.
1
15
.
33.
Niu
,
W. T.
,
Sui
,
H. T.
,
Niu
,
Y. X.
,
Cai
,
K. H.
, and
Gao
,
W. G.
,
2016
, “
Ship Pipe Routing Design Using NSGA-II and Coevolutionary Algorithm
,”
Math. Probl. Eng.
,
2016
, pp.
1
21
.
34.
Liu
,
G. Y.
,
Shu
,
C.
,
Liang
,
Z. W.
,
Peng
,
B. H.
, and
Cheng
,
L. F.
,
2021
, “
A Modified Sparrow Search Algorithm With Application in 3d Route Planning for UAV
,”
Sensors
,
21
(
4
), pp.
1
21
.
35.
Neumaier
,
M.
,
Kranemann
,
S.
,
Kazmeier
,
B.
, and
Rudolph
,
S.
,
2022
, “
Automated Piping in an Airbus A320 Landing Gear Bay Using Graph-Based Design Languages
,”
Aerospace
,
9
(
3
), pp.
1
22
.
36.
Biedermann
,
M.
,
Beutler
,
P.
, and
Meboldt
,
M.
,
2022
, “
Routing Multiple Flow Channels for Additive Manufactured Parts Using Iterative Cable Simulation
,”
Addit. Manuf.
,
56
, pp.
1
24
.
37.
Park
,
J. H.
, and
Huh
,
U. Y.
,
2016
, “
Path Planning for Autonomous Mobile Robot Based on Safe Space
,”
J. Electr. Eng. Technol.
,
11
(
5
), pp.
1441
1448
.
38.
Mohiuddin
,
M. A.
,
Khan
,
S. A.
, and
Engelbrecht
,
A. P.
,
2016
, “
Fuzzy Particle Swarm Optimization Algorithms for the Open Shortest Path First Weight Setting Problem
,”
Appl. Intell.
,
45
(
3
), pp.
598
621
.
39.
Lefebvre
,
N.
,
Schjolberg
,
I.
, and
Utne
,
I. B.
,
2016
, “
Integration of Risk in Hierarchical Path Planning of Underwater Vehicles
,”
Proceedings of the 10th IFAC Conference on Control Applications in Marine Systems (CAMS)
,
Trondheim, Norway
, pp.
226
231
.
40.
Liang
,
X.
,
Meng
,
G. L.
,
Xu
,
Y. M.
, and
Luo
,
H. T.
,
2018
, “
A Geometrical Path Planning Method for Unmanned Aerial Vehicle in 2D/3D Complex Environment
,”
Intel. Serv. Robot.
,
11
(
3
), pp.
301
312
.
41.
Masoudi
,
N.
, and
Fadel
,
G.
,
2022
, “
Solving Three-Dimensional Path Planning Problem Using a Visibility-Based Graphical Representation of the Design Space
,”
ASME J. Mech. Des.
,
144
(
8
), p.
081704
.
42.
Masoudi
,
N.
, and
Fadel
,
G.
,
2022
, “
An Optimization Framework for the Design of Cable Harness Layouts in Planar Interconnected Systems
,”
ASME J. Mech. Des.
,
144
(
1
), p.
011701
.
43.
Masoudi
,
N.
,
Fadel
,
G. M.
, and
Wiecek
,
M. M.
,
2019
, “
Planning the Shortest Path in Cluttered Environments: A Review and a Planar Convex Hull-Based Approach
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041011
.
44.
Peddada
,
S. R. T.
,
Zeidner
,
L. E.
,
Ilies
,
H. T.
,
James
,
K. A.
, and
Allison
,
J. T.
,
2022
, “
Toward Holistic Design of Spatial Packaging of Interconnected Systems With Physical Interactions (SPI2)
,”
ASME J. Mech. Des.
,
144
(
12
), p.
120801
.
45.
Jessee
,
A.
,
Peddada
,
S. R. T.
,
Lohan
,
D. J.
,
Allison
,
J. T.
, and
James
,
K. A.
,
2020
, “
Simultaneous Packing and Routing Optimization Using Geometric Projection
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111702
.
46.
Qian
,
B.
,
Fan
,
H. R.
, and
Zhang
,
J. R.
,
2022
, “
Fast Calculation Algorithm for Region Recognition and Model Interference Ratio in the STL Model Based on Voxel Mapping Decoupling
,”
Int. J. Adv. Manuf. Technol.
,
119
(
3–4
), pp.
1553
1578
.
47.
Hao
,
J. B.
,
Fang
,
L. A.
, and
Williams
,
R. E.
,
2011
, “
An Efficient Curvature-Based Partitioning of Large-Scale STL Models
,”
Rapid Prototyp. J.
,
17
(
2
), pp.
116
127
.
48.
Song
,
X. X.
,
Poirson
,
E.
,
Ravaut
,
Y.
, and
Bennis
,
F.
,
2022
, “
Multi-Objective Optimization of Layout With Functional Constraints
,”
Optim. Eng.
,
24
(
3
), pp.
1849
1882
.
49.
Yau
,
H. T.
, and
Hsu
,
C. W.
,
2022
, “
Nesting of 3D Irregular Shaped Objects Applied to Powder-Based Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
118
(
5–6
), pp.
1843
1858
.
50.
Trettner
,
P.
,
Nehring-Wirxel
,
J.
, and
Kobbelt
,
L.
,
2022
, “
EMBER: Exact Mesh Booleans via Efficient & Robust Local Arrangements
,”
ACM Trans. Graph.
,
41
(
4
), pp.
1
15
.
51.
Prasanth
,
D. R.
, and
Shunmugam
,
M. S.
,
2018
, “
Collision Detection During Planning for Sheet Metal Bending by Bounding Volume Hierarchy Approaches
,”
Int. J. Comput. Integr. Manuf.
,
31
(
9
), pp.
893
906
.
52.
Cherchi
,
G.
,
Pellacini
,
F.
,
Attene
,
M.
, and
Livesu
,
M.
,
2022
, “
Interactive and Robust Mesh Booleans
,”
ACM Trans. Graph.
,
41
(
6
).
You do not currently have access to this content.