Graphical Abstract Figure

A schematic representation of the new strategy for sensitivity estimation

Graphical Abstract Figure

A schematic representation of the new strategy for sensitivity estimation

Close modal

Abstract

Time-variant reliability sensitivity (TRS) analysis can measure the effect of input factors on the structure/mechanism failure. The traditional method for TRS analysis employs a nested sampling procedure, with computational cost depending on the number of input factors. To address the above weaknesses, a single-loop method is developed for TRS analysis. Based on Bayes’ theorem, the sensitivity measure is derived and expressed by the difference between the probability density function (PDF) and the failure-conditional PDF. This derivation allows for TRS analysis to be performed with just one set of samples, where the computational complexity does not depend on the number of inputs. Then, the procedures for Monte Carlo simulation (MCS) are listed based on the innovative estimation of the sensitivity index. Three examples involving numerical and engineering problems are employed to validate the proposed strategy, with the direct MCS introduced for comparison. The results reveal that the proposed strategy provides satisfactory TRS analysis while significantly saving computational resources.

References

1.
Du
,
X.
,
2014
, “
Time-Dependent Mechanism Reliability Analysis With Envelope Functions and First-Order Approximation
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081010
.
2.
Behtash
,
M.
, and
Alexander-Ramos
,
M. J.
,
2022
, “
A Reliability-Based Formulation for Simulation-Based Control Co-Design Using Generalized Polynomial Chaos Expansion
,”
ASME J. Mech. Des.
,
144
(
5
), p.
051705
.
3.
Zhao
,
Q.
,
Guo
,
J.
,
Zhao
,
D.
,
Yu
,
D.
, and
Hong
,
J.
,
2021
, “
Time-Dependent System Kinematic Reliability Analysis for Robotic Manipulators
,”
ASME J. Mech. Des.
,
143
(
4
), p.
041704
.
4.
MiarNaeimi
,
F.
,
Azizyan
,
G.
, and
Rashki
,
M.
,
2019
, “
Reliability Sensitivity Analysis Method Based on Subset Simulation Hybrid Techniques
,”
Appl. Math. Model.
,
75
, pp.
607
626
.
5.
Moustapha
,
M.
,
Parisi
,
P.
,
Marelli
,
S.
, and
Sudret
,
B.
,
2024
, “
Reliability Analysis of Arbitrary Systems Based on Active Learning and Global Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
248
, p.
110150
.
6.
Cadini
,
F.
,
Lombardo
,
S. S.
, and
Giglio
,
M.
,
2020
, “
Global Reliability Sensitivity Analysis by Sobol-Based Dynamic Adaptive Kriging Importance Sampling
,”
Struct. Saf.
,
87
, p.
101998
.
7.
Wang
,
X.
,
Geng
,
X.
,
Wang
,
L.
,
Wang
,
R.
,
Chen
,
X.
, and
Fan
,
W.
,
2018
, “
Time-Dependent Reliability-Based Dimensional Synthesis for Planar Linkages With Unknown But Bounded Joint Clearances
,”
ASME J. Mech. Des.
,
140
(
6
), p.
061402
.
8.
Wang
,
Z.
,
Wang
,
Z.
,
Yu
,
S.
, and
Zhang
,
K.
,
2019
, “
Time-Dependent Mechanism Reliability Analysis Based on Envelope Function and Vine-Copula Function
,”
Mech. Mach. Theory
,
134
, pp.
667
684
.
9.
Zhang
,
D.
,
Shen
,
S.
,
Wu
,
J.
,
Wang
,
F.
, and
Han
,
X.
,
2023
, “
Kinematic Trajectory Accuracy Reliability Analysis for Industrial Robots Considering Intercorrelations Among Multi-Point Positioning Errors
,”
Reliab. Eng. Syst. Saf.
,
229
, p.
108808
.
10.
Wang
,
W.
,
Shen
,
G.
,
Zhang
,
Y.
,
Zhu
,
Z.
,
Li
,
C.
, and
Lu
,
H.
,
2021
, “
Dynamic Reliability Analysis of Mechanical System With Wear and Vibration Failure Modes
,”
Mech. Mach. Theory
,
163
, p.
104385
.
11.
Chen
,
J.
,
Chen
,
L.
,
Qian
,
L.
,
Chen
,
G.
, and
Zhou
,
S.
,
2022
, “
Time-Dependent Kinematic Reliability Analysis of Gear Mechanism Based on Sequential Decoupling Strategy and Saddle-Point Approximation
,”
Reliab. Eng. Syst. Saf.
,
220
, p.
108292
.
12.
Rice
,
S. O.
,
1944
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
23
(
3
), pp.
282
332
.
13.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The Phi2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
.
14.
Zhang
,
X.
,
Lu
,
Z.
,
Zhao
,
Y.
, and
Li
,
C.
,
2022
, “
The Glo Method: An Efficient Algorithm for Time-Dependent Reliability Analysis Based on Outcrossing Rate
,”
Struct. Saf.
,
97
, p.
102204
.
15.
Lu
,
Z.
,
Qiao
,
H.
,
Zhang
,
X.
, and
Zhao
,
Y.
,
2023
, “
An Innovative Method for Space-Time-Dependent Reliability Analysis
,”
Struct. Saf.
,
102
, p.
102326
.
16.
Zhuang
,
X.
,
Li
,
X.
,
Liu
,
C.
,
Yu
,
T.
, and
Song
,
B.
,
2024
, “
Time-Dependent Kinematic Reliability of Motion Mechanisms With Dynamic Factors
,”
Probabilist. Eng. Mech.
,
76
, p.
103598
.
17.
Savage
,
G. J.
, and
Son
,
Y. K.
,
2016
, “
An Extreme-Value Event Approach for Frequency-Domain Performance Reliability
,”
IEEE Trans. Reliab.
,
65
(
2
), pp.
1058
1068
.
18.
Wang
,
L.
,
Zhang
,
X.
, and
Zhou
,
Y.
,
2018
, “
An Effective Approach for Kinematic Reliability Analysis of Steering Mechanisms
,”
Reliab. Eng. Syst. Saf.
,
180
, pp.
62
76
.
19.
Bae
,
S.
,
Park
,
C.
, and
Kim
,
N. H.
,
2020
, “
Estimating Effect of Additional Sample on Uncertainty Reduction in Reliability Analysis Using Gaussian Process
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111706
.
20.
Zha
,
C.
,
Sun
,
Z.
,
Wang
,
J.
,
Pan
,
C.
,
Liu
,
Z.
, and
Dong
,
P.
,
2022
, “
A General Active-Learning Method for Surrogate-Based Structural Reliability Analysis
,”
Struct. Eng. Mech.
,
83
(
2
), pp.
167
178
.
21.
Zhang
,
C.
, and
Bai
,
G.
,
2012
, “
Extremum Response Surface Method of Reliability Analysis on Two-Link Flexible Robot Manipulator
,”
J. Cent. South Univ.
,
19
(
1
), pp.
101
107
.
22.
Ehre
,
M.
,
Papaioannou
,
I.
, and
Straub
,
D.
,
2024
, “
Variance-Based Reliability Sensitivity With Dependent Inputs Using Failure Samples
,”
Struct. Saf.
,
106
, p.
102396
.
23.
Zha
,
C.
,
Pan
,
C.
,
Sun
,
Z.
, and
Liu
,
Q.
,
2024
, “
An Efficient Single-Loop Strategy for Time-Variant Reliability Sensitivity Analysis Based on Bayes’ Theorem
,”
Structures
,
69
, p.
107464
.
24.
Chauhan
,
M. S.
,
OjedaTuz
,
M.
,
Catarelli
,
R. A.
,
Gurley
,
K. R.
,
Tsapetis
,
D.
, and
Shields
,
M. D.
,
2024
, “
On Active Learning for Gaussian Process-Based Global Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
245
, p.
109945
.
25.
Chiron
,
M.
,
Morio
,
J.
, and
Dubreuil
,
S.
,
2023
, “
Local Sensitivity of Failure Probability Through Polynomial Regression and Importance Sampling
,”
Mathematics
,
11
(
20
), p.
4357
.
26.
Papaioannou
,
I.
,
Breitung
,
K.
, and
Straub
,
D.
,
2018
, “
Reliability Sensitivity Estimation With Sequential Importance Sampling
,”
Struct. Saf.
,
75
, pp.
24
34
.
27.
Proppe
,
C.
,
2021
, “
Local Reliability Based Sensitivity Analysis With the Moving Particles Method
,”
Reliab. Eng. Syst. Saf.
,
207
, p.
107269
.
28.
Vuillod
,
B.
,
Montemurro
,
M.
,
Panettieri
,
E.
, and
Hallo
,
L.
,
2023
, “
A Comparison Between Sobol’s Indices and Shapley’s Effect for Global Sensitivity Analysis of Systems With Independent Input Variables
,”
Reliab. Eng. Syst. Saf.
,
234
, p.
109177
.
29.
Merritt
,
M.
,
Alexanderian
,
A.
, and
Gremaud
,
P.
,
2023
, “
Global Sensitivity Analysis of Rare Event Probabilities Using Subset Simulation and Polynomial Chaos Expansions
,”
Int. J. Uncertain. Quan.
,
13
(
1
), pp.
53
67
.
30.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.
31.
Zha
,
C.
,
Pan
,
C.
,
Sun
,
Z.
, and
Liu
,
Q.
,
2024
, “
Reliability Sensitivity Analysis for Water Hammer-Induced Stress Failure of Fluid-Conveying Pipe
,”
Appl. Math. Model.
,
130
, pp.
51
65
.
32.
Sobol
,
I.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simulat.
,
55
(
1–3
), pp.
271
280
.
33.
Homma
,
T.
, and
Saltelli
,
A.
,
1996
, “
Importance Measures in Global Sensitivity Analysis of Nonlinear Models
,”
Reliab. Eng. Syst. Saf.
,
52
(
1
), pp.
1
17
.
34.
Borgonovo
,
E.
,
2007
, “
A New Uncertainty Importance Measure
,”
Reliab. Eng. Syst. Saf.
,
92
(
6
), pp.
771
784
.
35.
Li
,
L.
,
Lu
,
Z.
,
Feng
,
J.
, and
Wang
,
B.
,
2012
, “
Moment-Independent Importance Measure of Basic Variable and Its State Dependent Parameter Solution
,”
Struct. Saf.
,
38
, pp.
40
47
.
36.
Cheng
,
K.
,
Lu
,
Z.
,
Ling
,
C.
, and
Zhou
,
S.
,
2020
, “
Surrogate-Assisted Global Sensitivity Analysis: An Overview
,”
Struct. Multidiscip. Optim.
,
61
(
3
), pp.
1187
1213
.
37.
Wei
,
P.
,
Song
,
J.
,
Lu
,
Z.
, and
Yue
,
Z.
,
2016
, “
Time-dependent Reliability Sensitivity Analysis of Motion Mechanisms
,”
Reliab. Eng. Syst. Saf.
,
149
, pp.
107
120
.
38.
Wei
,
P.
,
Wang
,
Y.
, and
Tang
,
C.
,
2017
, “
Time-Variant Global Reliability Sensitivity Analysis of Structures With Both Input Random Variables and Stochastic Processes
,”
Struct. Multidiscip. Optim.
,
55
(
5
), pp.
1883
1898
.
39.
Shang
,
X.
,
Zhang
,
Z.
,
Fang
,
H.
,
Jiang
,
L.
, and
Wang
,
L.
,
2024
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansion Enhanced Gaussian Process Regression Method
,”
Eng. Comput.
,
40
(
2
), pp.
1231
1246
.
40.
Jia
,
D.
, and
Wu
,
Z.
,
2024
, “
An Improved Adaptive Kriging Model for Importance Sampling Reliability and Reliability Global Sensitivity Analysis
,”
Struct. Saf.
,
107
, p.
102427
.
41.
Zha
,
C.
,
Pan
,
C.
,
Sun
,
Z.
, and
Liu
,
Q.
,
2024
, “
Reliability Sensitivity Analysis for Set Pressure Tolerance of the Direct-Operated Relief Valve in a Vibration Environment
,”
J. Mech. Sci. Technol.
,
38
(
9
), pp.
4835
4845
.
42.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Global Sensitivity Analysis-Enhanced Surrogate (gsas) Modeling for Reliability Analysis
,”
Struct. Multidiscip. Optim.
,
53
(
3
), pp.
501
521
.
43.
Liu
,
Y.
,
Li
,
L.
,
Chang
,
Z.
, and
Wang
,
P.
,
2022
, “
Kriging-Based Analytical Technique for Global Sensitivity Analysis of Systems With Multivariate Output
,”
Struct. Multidiscip. Optim.
,
65
(
10
), p.
288
.
44.
Idrissi
,
M.
,
Chabridon
,
V.
, and
Iooss
,
B.
,
2021
, “
Developments and Applications of Shapley Effects to Reliability-Oriented Sensitivity Analysis With Correlated Inputs
,”
Environ. Model. Softw.
,
143
, p.
105115
.
45.
Zhang
,
F.
,
Xu
,
X.
,
Cheng
,
L.
,
Tan
,
S.
,
Wang
,
W.
, and
Wu
,
M.
,
2020
, “
Mechanism Reliability and Sensitivity Analysis Method Using Truncated and Correlated Normal Variables
,”
Saf. Sci.
,
125
, p.
104615
.
46.
Xiao
,
N.
,
Huang
,
H.
,
Wang
,
Z.
,
Pang
,
Y.
, and
He
,
L.
,
2011
, “
Reliability Sensitivity Analysis for Structural Systems in Interval Probability Form
,”
Struct. Multidiscip. Optim.
,
44
(
5
), pp.
691
705
.
47.
Wang
,
W.
,
Gao
,
H.
,
Wei
,
P.
, and
Zhou
,
C.
,
2017
, “
Extending First-Passage Method to Reliability Sensitivity Analysis of Motion Mechanisms
,”
Proc. Inst. Mech. Eng., Part O: J. Risk Reliabil.
,
231
(
5
), pp.
573
586
.
48.
Zha
,
C.
,
Pan
,
C.
,
Sun
,
Z.
, and
Liu
,
Q.
,
2024
, “
A Single-Loop Reliability Sensitivity Analysis Strategy for Time-dependent Rare Events With Both Random Variables and Stochastic Processes
,”
Reliab. Eng. Syst. Saf.
,
251
, p.
110373
.
49.
Shi
,
Y.
,
Lu
,
Z.
,
Cheng
,
K.
, and
Zhou
,
Y.
,
2017
, “
Temporal and Spatial Multi-Parameter Dynamic Reliability and Global Reliability Sensitivity Analysis Based on the Extreme Value Moments
,”
Struct. Multidiscip. Optim.
,
56
(
1
), pp.
117
129
.
50.
Ling
,
C.
,
Lu
,
Z.
,
Zhang
,
X.
, and
Zhou
,
S.
,
2020
, “
An Efficient Method for Estimating Time-Dependent Global Reliability Sensitivity
,”
Struct. Multidiscip. Optim.
,
62
(
2
), pp.
851
871
.
51.
Guo
,
Q.
,
Zhai
,
H.
,
Suo
,
B.
,
Zhao
,
W.
, and
Liu
,
Y.
,
2023
, “
Time-Variant Reliability Global Sensitivity Analysis With Single-Loop Kriging Model Combined With Importance Sampling
,”
Probabilist. Eng. Mech.
,
72
, p.
103441
.
52.
Cadini
,
F.
,
Santos
,
F.
, and
Zio
,
E.
,
2014
, “
An Improved Adaptive Kriging-Based Importance Technique for Sampling Multiple Failure Regions of Low Probability
,”
Reliab. Eng. Syst. Saf.
,
131
, pp.
109
117
.
53.
Wang
,
Y.
,
Xiao
,
S.
, and
Lu
,
Z.
,
2019
, “
An Efficient Method Based on Bayes’ Theorem to Estimate the Failure-Probability-Based Sensitivity Measure
,”
Mech. Syst. Signal Process.
,
115
, pp.
607
620
.
54.
Zhao
,
Z.
,
Lu
,
Z.
,
Zhang
,
X.
, and
Zhao
,
Y.
,
2022
, “
A Nested Single-Loop Kriging Model Coupled With Subset Simulation for Time-Dependent System Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
228
, p.
108819
.
55.
Cui
,
L.
,
Lu
,
Z.
, and
Zhao
,
X.
,
2010
, “
Moment-Independent Importance Measure of Basic Random Variable and Its Probability Density Evolution Solution
,”
Sci. China: Technol. Sci.
,
53
(
4
), pp.
1138
1145
.
56.
Botev
,
Z. I.
,
Grotowski
,
J. F.
, and
Kroese
,
D. P.
,
2010
, “
Kernel Density Estimation via Diffusion
,”
Ann. Statist.
,
38
(
5
), pp.
2916
2957
.
57.
Zhou
,
C.
,
Shi
,
Z.
,
Kucherenko
,
S.
, and
Zhao
,
H.
,
2022
, “
A Unified Approach for Global Sensitivity Analysis Based on Active Subspace and Kriging
,”
Reliab. Eng. Syst. Saf.
,
217
, p.
108080
.
You do not currently have access to this content.