Abstract

Tensegrity manipulators are rigid-flexible coupling elastic mechanisms with complex stiffness characteristics. By changing the prestress levels of tensile cables, the manipulators become versatile mechanisms with variable stiffness. This allows them to maneuvering steadily in high stiffness mode during transport tasks while exhibiting good carrying capacity and hold enhanced compliance for interactive safety in lower stiffness mode. However, it is difficult to achieve the desirable pose and desired stiffness simultaneously for tensegrity manipulators due to the strong correlation between the equilibrium pose and the prestress state. This article proposes an in situ variable stiffness strategy for the dual-triangle planar tensegrity manipulator (DTPTM), which can change the manipulator’s stiffness without changing its pose. First, a static model is developed for the tensegrity manipulator under external constraints in terms of natural coordinates. Then, the tangent stiffness matrix is derived and reduced based on the statics model and the corresponding null space matrix. By constructing the objective function, the variable stiffness strategy is established as a quadratic programming problem to vary the stiffness of all joints. On the basis of numerical results, we analyze the range of variable stiffness for the dual-triangle tensegrity (DTT) module and discuss the feasibility of the variable stiffness strategy. Finally, the variable stiffness strategy is verified by various simulation results and validated by hardware experiments of the 2-degrees-of-freedom manipulator prototype.

References

1.
Buckminster
,
F. R.
,
1962
, Tensile-Integrity Structures: 3063521A[P]. U.S. Patent 1962-11-13, https://patents.google.com/patent/US3063521A/en
2.
Wang
,
R.
,
Goyal
,
R.
,
Chakravorty
,
S.
, and
Skelton
,
R. E.
,
2020
, “
Model and Data Based Approaches to the Control of Tensegrity Robots
,”
IEEE Rob. Automat. Lett.
,
5
(
3
), pp.
3846
3853
.
3.
Sabelhaus
,
A. P.
,
Zhao
,
H.
,
Zhu
,
E. L.
,
Agogino
,
A. K.
, and
Agogino
,
A. M.
,
2019
, “
Model-Predictive Control With Inverse Statics Optimization for Tensegrity Spine Robots
,”
IEEE Trans. Control Syst. Technol.
,
29
(
1
), pp.
263
277
.
4.
Yeshmukhametov
,
A.
, and
Koganezawa
,
K.
,
2023
, “
Design of a Fully Pulley-Guided Wire-Driven Prismatic Tensegrity Robot: Friction Impact to Robot Payload Capacity Wire-Driven Prismatic Tensegrity Robot: Friction Impact to Robot Payload Capacity
,”
IEEE Rob. Automat. Lett.
,
8
(
10
), pp.
6507
6514
.
5.
Oliveira
,
M. C.
, and
Skelton
,
R. E.
,
2009
,
Tensegrity Systems
,
Springer US
,
Boston, MA
.
6.
Fasquelle
,
B.
,
Furet
,
M.
,
Chevallereau
,
C.
, and
Wenger
,
P.
,
2019
, “Dynamic Modeling and Control of a Tensegrity Manipulator Mimicking a Bird Neck,”
Advances in Mechanism and Machine Science
,
T.
Uhl
, ed.,
Springer International Publishing
,
Cham
, pp.
2087
2097
.
7.
Melnyk
,
A.
, and
Pitti
,
A.
,
2018
, “
Synergistic Control of a Multi-Segments Vertebral Column Robot Based on Tensegrity for Postural Balance
,”
Adv. Rob.
,
32
(
15
), pp.
850
864
.
8.
Zappetti
,
D.
,
Arandes
,
R.
,
Ajanic
,
E.
, and
Floreano
,
D.
,
2020
, “
Variable-Stiffness Tensegrity Spine
,”
Smart Mater. Struct.
,
29
(
7
), p.
075013
.
9.
Sabelhaus
,
A. P.
,
Bruce
,
J.
,
Caluwaerts
,
K.
,
Manovi
,
P.
,
Firoozi
,
R. F.
,
Dobi
,
S.
,
Agogino
,
A. M.
, and
SunSpiral
,
V.
,
2015
, “
System Design and Locomotion of SUPERball, an Untethered Tensegrity Robot
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
2867
2873
.
10.
Lessard
,
S.
,
Castro
,
D.
,
Asper
,
W.
,
Chopra
,
S. D.
,
Baltaxe-Admony
,
L. B.
,
Teodorescu
,
M.
,
SunSpiral
,
V.
, and
Agogino
,
A.
,
2016
, “
A Bio-Inspired Tensegrity Manipulator With Multi-DOF, Structurally Compliant Joints
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, IEEE, pp.
5515
5520
.
11.
Woods
,
C.
, and
Vikas
,
V.
,
2023
, “
Design and Modeling Framework for DexTeR: Dexterous Continuum Tensegrity Manipulator
,”
ASME J. Mech. Rob.
,
15
(
3
), p.
031006
.
12.
Wei
,
D.
,
Gao
,
T.
,
Mo
,
X.
,
Xi
,
R.
, and
Zhou
,
C.
,
2020
, “
Flexible Bio-Tensegrity Manipulator With Multi-Degree of Freedom and Variable Structure
,”
Chin. J. Mech. Eng.
,
33
(
1
), p.
3
.
13.
Liu
,
Y.
,
Bi
,
Q.
,
Yue
,
X.
,
Wu
,
J.
,
Yang
,
B.
, and
Li
,
Y.
,
2022
, “
A Review on Tensegrity Structures-Based Robots
,”
Mech. Mach. Theory
,
168
.
14.
Ikemoto
,
S.
,
Tsukamoto
,
K.
, and
Yoshimitsu
,
Y.
,
2021
, “
Development of a Modular Tensegrity Robot Arm Capable of Continuous Bending
,”
Front. Rob. AI
,
8
.
15.
Shah
,
D. S.
,
Booth
,
J. W.
,
Baines
,
R. L.
,
Wang
,
K.
,
Vespignani
,
M.
,
Bekris
,
K.
, and
Kramer-Bottiglio
,
R.
,
2022
, “
Tensegrity Robotics
,”
Soft Rob.
,
9
(
4
), pp.
639
656
.
16.
Zhang
,
J.
,
Shi
,
J.
,
Huang
,
J.
,
Wu
,
Q.
,
Zhao
,
Y.
,
Yang
,
J.
,
Rajabi
,
H.
,
Wu
,
Z.
,
Peng
,
H.
, and
Wu
,
J.
,
2023
, “
In Situ Reconfigurable Continuum Robot With Varying Curvature Enabled by Programmable Tensegrity Building Blocks
,”
Adv. Intell. Syst.
,
5
(
7
), p.
2300048
.
17.
Zhang
,
J.
,
Wang
,
B.
,
Chen
,
H.
,
Bai
,
J.
,
Wu
,
Z.
,
Liu
,
J.
,
Peng
,
H.
, and
Wu
,
J.
,
2023
, “
Bioinspired Continuum Robots With Programmable Stiffness by Harnessing Phase Change Materials
,”
Adv. Mater. Technol.
,
8
(
6
), p.
2201616
.
18.
Guest
,
S. D.
,
2011
, “
The Stiffness of Tensegrity Structures
,”
IMA J. Appl. Math.
,
76
(
1
), pp.
57
66
.
19.
Chen
,
Y.
,
Feng
,
J.
,
Lv
,
H.
, and
Sun
,
Q.
,
2018
, “
Symmetry Representations and Elastic Redundancy for Members of Tensegrity Structures
,”
Composite Structures
,
203
, pp.
672
680
.
20.
Lee
,
S.
, and
Lee
,
J.
,
2014
, “
Form-Finding of Tensegrity Structures With Arbitrary Strut and Cable Members
,”
Int. J. Mech. Sci.
,
85
, pp.
55
62
.
21.
Zappetti
,
D.
,
Jeong
,
S. H.
,
Shintake
,
J.
, and
Floreano
,
D.
,
2019
, “
Phase Changing Materials-Based Variable-Stiffness Tensegrity Structures
,”
Soft Rob.
,
7
(
3
), pp.
362
369
.
22.
Azadi
,
M.
, and
Behzadipour
,
S.
,
2009
, “
Variable Antagonistic Stiffness Element Using Tensegrity Mechanism
,”
ASME 2007 International Mechanical Engineering Congress and Exposition
,
Seattle, WA
,
May 22
, pp.
21
28
.
23.
Sui
,
D.
,
Zhao
,
S.
,
Wang
,
T.
,
Liu
,
Y.
,
Zhu
,
Y.
, and
Zhao
,
J.
,
2025
, “
Design of a Bio-Inspired Extensible Continuum Manipulator With Variable Stiffness
,”
J. Bionic Eng.
,
22
(
1
), pp.
181
194
.
24.
Zhang
,
J.
,
Li
,
Y.
,
Kan
,
Z.
,
Yuan
,
Q.
,
Rajabi
,
H.
,
Wu
,
Z.
,
Peng
,
H.
, and
Wu
,
J.
,
2023
, “
A Preprogrammable Continuum Robot Inspired by Elephant Trunk for Dexterous Manipulation
,”
Soft Robotics
,
10
(
3
), pp.
636
646
.
25.
Chen
,
B.
,
Cui
,
Z.
, and
Jiang
,
H.
,
2018
, “
Producing Negative Active Stiffness in Redundantly Actuated Planar Rotational Parallel Mechanisms
,”
Mech. Mach. Theory
,
128
, pp.
336
348
.
26.
Muralidharan
,
V.
, and
Wenger
,
P.
,
2021
, “
Optimal Design and Comparative Study of Two Antagonistically Actuated Tensegrity Joints
,”
Mech. Mach. Theory
,
159
.
27.
Zhao
,
W.
,
Pashkevich
,
A.
,
Klimchik
,
A.
, and
Chablat
,
D.
,
2021
, “
Elastostatic Modeling of Multi-Link Flexible Manipulator Based on Two-Dimensional Dual-Triangle Tensegrity Mechanism
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021002
.
28.
Wolf
,
S.
,
Grioli
,
G.
,
Eiberger
,
O.
,
Friedl
,
W.
, and
Grebenstein
,
M.
,
2016
, “
Variable Stiffness Actuators: Review on Design and Components
,”
IEEE/ASME Trans. Mechtron.
,
21
(
5
), pp.
2418
2430
.
29.
Martinez-Villalpando
,
E. C.
, and
Herr
,
Hugh
,
2009
, “
Agonist-Antagonist Active Knee Prosthesis: A Preliminary Study in Level-Ground Walking
,”
J. Rehab. Res. Develop.
,
46
(
3
), pp.
361
374
.
30.
Ott
,
C.
,
Dietrich
,
A.
,
Leidner
,
D.
,
Werner
,
A.
,
Englsberger
,
J.
,
Henze
,
B.
,
Wolf
,
S.
, et al.,
2015
, “
From Torque-Controlled to Intrinsically Compliant Humanoid Robots
,”
ASME Mech. Eng.
,
137
(
6
), pp.
S7
S11
.
31.
Jurado Realpe
,
t. r. J.
,
Abdelaziz
,
S.
, and
Poignet
,
P.
,
2020
, “Model Predictive Controller for a Planar Tensegrity Mechanism With Decoupled Position andStiffness Control,”
Advances in Robot Kinematics 2020
,
J.
Lenarcic
, and
B.
Siciliano
, eds.,
Springer International Publishing
,
Cham
, pp.
349
358
.
32.
Boehler
,
Q.
,
Abdelaziz
,
S.
,
Vedrines
,
M.
,
Poignet
,
P.
, and
Renaud
,
P.
,
2017
, “
From Modeling to Control of a Variable Stiffness Device Based on a Cable-Driven Tensegrity Mechanism
,”
Mech. Mach. Theory
,
107
, pp.
1
12
.
33.
Savin
,
S.
,
Balakhnov
,
O.
, and
Klimchik
,
A.
,
2020
, “
Convex Optimization-Based Stiffness Control for Tensegrity Robotic Structures
,”
2020 28th Mediterranean Conference on Control and Automation (MED)
,
Saint-Raphaël, France
,
Sept. 15–18
, pp.
990
995
.
34.
Sabelhaus
,
A. P.
,
Li
,
A. H.
,
Sover
,
K. A.
,
Madden
,
J. R.
,
Barkan
,
A. R.
,
Agogino
,
A. K.
, and
Agogino
,
A. M.
,
2020
, “
Inverse Statics Optimization for Compound Tensegrity Robots
,”
IEEE Rob. Automat. Lett.
,
5
(
3
), pp.
3982
3989
.
35.
Luo
,
J.
,
Wu
,
Z.
,
Xu
,
X.
,
Chen
,
Y.
,
Liu
,
Z.
, and
Ming
,
L.
,
2022
, “
Forward Statics of Tensegrity Robots With Rigid Bodies Using Homotopy Continuation
,”
IEEE Rob. Automat. Lett.
,
7
(
2
), pp.
5183
5190
.
36.
de Jalón
,
J. G.
,
2007
, “
Twenty-Five Years of Natural Coordinates
,”
Multibody Syst. Dyn.
,
18
(
1
), pp.
15
33
.
37.
Pappalardo
,
C. M.
,
2015
, “
A Natural Absolute Coordinate Formulation for the Kinematic and Dynamic Analysis of Rigid Multibody Systems
,”
Nonlinear Dyn.
,
81
(
4
), pp.
1841
1869
.
38.
Xu
,
X.
,
Luo
,
J.
,
Feng
,
X.
,
Peng
,
H.
, and
Wu
,
Z.
,
2021
, “
A Generalized Inertia Representation for Rigid Multibody Systems in Terms of Natural Coordinates
,”
Mech. Mach. Theory
,
157
.
39.
Luo
,
J.
,
Xu
,
X.
,
Wu
,
Z.
, and
Wu
,
S.
,
2024
, “
A Unified Approach to Dynamic Analysis of Tensegrity Structures With Arbitrary Rigid Bodies and Rigid Bars
,”
Multibody System Dynamics
, pp.
1
32
.
40.
Luo
,
J.
,
Ge
,
L.
,
Xu
,
X.
,
Liu
,
X.
,
Zhuang
,
Z.
,
Han
,
L.
, and
Wu
,
Z.
,
2025
, “
Stability Conditions and Stiffness Variability of General Tensegrity Systems With Kinematic Joints
,”
ASME J. Mech. Rob.
,
17
(
7
), p.
071002
.
41.
Wang
,
J.
,
Qi
,
Z.
, and
Wang
,
G.
,
2017
, “
Hybrid Modeling for Dynamic Analysis of Cable-Pulley Systems With Time-Varying Length Cable and Its Application
,”
J. Sound Vib.
,
406
, pp.
277
294
.
You do not currently have access to this content.