The kinematic chains that generate the planar motion group in which the prismatic-joint direction is always perpendicular to the revolute-joint axis have shown their effectiveness in type synthesis and mechanism analysis in parallel mechanisms. This paper extends the standard prismatic–revolute–prismatic (PRP) kinematic chain generating the planar motion group to a relatively generic case, in which one of the prismatic joint-directions is not necessarily perpendicular to the revolute-joint axis, leading to the discovery of a pseudo-helical motion with a variable pitch in a kinematic chain. The displacement of such a PRP chain generates a submanifold of the Schoenflies motion subgroup. This paper investigates for the first time this type of motion that is the variable-pitched pseudo-planar motion described by the above submanifold. Following the extraction of a helical motion from this skewed PRP kinematic chain, this paper investigates the bifurcated motion in a 3-prismatic–universal–prismatic (PUP) parallel mechanism by changing the active geometrical constraint in its configuration space. The method used in this contribution simplifies the analysis of such a parallel mechanism without resorting to an in-depth geometrical analysis and screw theory. Further, a parallel platform which can generate this skewed PRP type of motion is presented. An experimental test setup is based on a three-dimensional (3D) printed prototype of the 3-PUP parallel mechanism to detect the variable-pitched translation of the helical motion.

References

1.
Wohlhart
,
K.
,
1996
, “
Kinematotropic Linkages
,”
Recent Advances in Robot Kinematics
,
Springer
, Dordrecht,
The Netherlands
, pp.
359
368
.
2.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
.
3.
Qin
,
Y.
,
Dai
,
J. S.
, and
Gogu
,
G.
,
2014
, “
Multi-Furcation in a Derivative Queer-Square Mechanism
,”
Mech. Mach. Theory
,
81
, pp.
36
53
.
4.
Kong
,
X.
,
2014
, “
Reconfiguration Analysis of a 3-DOF Parallel Mechanism Using Euler Parameter Quaternions and Algebraic Geometry Method
,”
Mech. Mach. Theory
,
74
, pp.
188
201
.
5.
Walter
,
D. R.
,
Husty
,
M. L.
, and
Pfurner
,
M.
,
2009
, “
A Complete Kinematic Analysis of the SNU 3-UPU Parallel Robot
,”
Contemp. Math.
,
496
, pp.
331
346
.
6.
Nurahmi
,
L.
,
Caro
,
S.
,
Wenger
,
P.
,
Schadlbauer
,
J.
, and
Husty
,
M.
,
2016
, “
Reconfiguration Analysis of a 4-RUU Parallel Manipulator
,”
Mech. Mach. Theory
,
96
(Pt. 2), pp.
269
289
.
7.
López-Custodio
,
P. C.
,
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
, and
Pérez-Soto
,
G.
,
2016
, “
Reconfigurable Mechanisms From the Intersection of Surfaces
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021029
.
8.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L. D.
,
2013
, “
Unified Kinematics and Singularity Analysis of a Metamorphic Parallel Mechanism With Bifurcated Motion
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
031004
.
9.
Carbonari
,
L.
,
Callegari
,
M.
,
Palmieri
,
G.
, and
Palpacelli
,
M. C.
,
2014
, “
A New Class of Reconfigurable Parallel Kinematic Machines
,”
Mech. Mach. Theory
,
79
, pp.
173
183
.
10.
Rodriguez-Leal
,
E.
,
Dai
,
J. S.
, and
Pennock
,
G. R.
,
2009
, “
Inverse Kinematics and Motion Simulation of a 2-DOF Parallel Manipulator With 3-PUP Legs
,”
5th International Workshop on Computational Kinematics
(
CK
), Duisburg, Germany, May 6–8, pp.
85
92
.
11.
Hervé, J. M., 2004, “
Parallel Mechanisms With Pseudo-Planar Motion Generators
,”
On Advances in Robot Kinematics
, J. Lenarčič and C. Galletti, eds., Springer, Dordrecht, The Netherlands.
12.
Tu
,
L.
,
2008
,
An Introduction to Manifolds
, Vol.
200
,
Springer
,
New York
.
13.
Mourad
,
K.
, and
Hervé
,
J. M.
,
2002
,
A Family of Novel Orientational 3-DOF Parallel Robots
,
Springer
,
Vienna, Austria
.
14.
Meng
,
J.
,
Liu
,
G.
, and
Li
,
Z.
,
2007
, “
A Geometric Theory for Analysis and Synthesis of Sub-6 DoF Parallel Manipulators
,”
IEEE Trans. Rob.
,
23
(
4
), pp.
625
649
.
15.
Lee
,
C. C.
, and
Hervé
,
J. M.
,
2006
, “
Translational Parallel Manipulators With Doubly Planar Limbs
,”
Mech. Mach. Theory
,
41
(
4
), pp.
433
455
.
16.
Pérez-Soto
,
G.
, and
Tadeo
,
A.
,
2006
, “Sintesis de número de cadenas cinemáticas, un nuevo enfoque y nuevas herramientas matemáticas. (in Spanish),” M.Sc. thesis, Universidad de Guanajuato, Salamanca Gto., México.
17.
Lee
,
C. C.
, and
Hervé
,
J. M.
,
2007
, “
Cartesian Parallel Manipulators With Pseudoplanar Limbs
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1256
1264
.
18.
Lee
,
C. C.
, and
Hervé
,
J. M.
,
2009
, “
Type Synthesis of Primitive Schoenflies-Motion Generators
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1980
1997
.
19.
Hervé
,
J. M.
,
1978
, “
Analyze Structurelle Des Mécanismes Par Groupe Des Déplacements (in French)
,”
Mech. Mach. Theory
,
13
(4), pp.
437
450
.
20.
Dai
,
J. S.
,
2012
, “
Finite Displacement Screw Operators With Embedded Chasles' Motion
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041002
.
21.
Dai
,
J. S.
,
2015
, “
Euler-Rodrigues Formula Variations, Quaternion Conjugation and Intrinsic Connections
,”
Mech. Mach. Theory
,
92
, pp.
144
152
.
22.
Dai
,
J. S.
,
2006
, “
An Historical Review of the Theoretical Development of Rigid Body Displacements From Rodrigues Parameters to the Finite Twist
,”
Mech. Mach. Theory
,
41
(
1
), pp.
41
52
.
23.
Li
,
Q. C.
,
Huang
,
Z.
, and
Hervé
,
J. M.
,
2004
, “
Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group of Displacements
,”
IEEE Trans. Rob. Autom.
,
20
(2), pp.
173
180
.
24.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2007
,
Type Synthesis of Parallel Mechanisms
,
Springer
,
Berlin
.
25.
Gogu
,
G.
,
2007
,
Structural Synthesis of Parallel Robots—Part I: Methodology
,
Springer-Verlag
,
Berlin
.
26.
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
,
Tadeo-Chávez
,
A.
,
Pérez-Soto
,
G. I.
, and
Rocha-Chavarría
,
J.
,
2008
, “
New Considerations on the Theory of Type Synthesis of Fully Parallel Platforms
,”
ASME J. Mech. Des.
,
130
(11), p.
112302
.
27.
Carricato
,
M.
, and
Rico
,
J. M.
,
2010
, “
Persistent Screw Systems
,”
Advances in Robot Kinematics: Motion in Man and Machine
,
J.
Lenarčič
and
M. M.
Stanišić
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
185
194
.
28.
Tadeo-Chávez
,
A.
,
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
,
Pérez-Soto
,
G.
, and
Müller
,
A.
,
2011
, “Screw Systems Generated by Subalgebras: A Further Analysis,”
ASME
Paper No. DETC2011-48304.
29.
Wu
,
Y.
,
Löwe
,
H.
,
Carricato
,
M.
, and
Li
,
Z.
,
2016
, “
Inversion Symmetry of the Euclidean Group: Theory and Application to Robot Kinematics
,”
IEEE Trans. Rob.
,
32
(
2
), pp.
312
326
.
30.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2012
, “
Constraint Analysis and Bifurcated Motion of the 3PUP Parallel Mechanism
,”
Mech. Mach. Theory
,
49
, pp.
256
269
.
31.
Gan
,
D.
, and
Dai
,
J. S.
,
2013
, “
Geometry Constraint and Branch Motion Evolution of 3-PUP Parallel Mechanisms With Bifurcated Motion
,”
Mech. Mach. Theory
,
61
, pp.
168
183
.
32.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
33.
Dai
,
J. S.
,
2014
,
Geometrical Foundations and Screw Algebra for Mechanisms and Robotics
,
Higher Education Press
,
Beijing, China
.
34.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2002
, “
Null–Space Construction Using Cofactors From a Screw–Algebra Context
,”
Proc. R. Soc. London. Ser. A: Math., Phys. Eng. Sci.
,
458
(
2024
), pp.
1845
1866
.
35.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
2001
, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Machine Theory
,
36
(
5
), pp.
633
651
.
36.
Rico-Martínez
,
J. M.
, and
Ravani
,
B.
,
2003
, “
On Mobility Analysis of Linkages Using Group Theory
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
70
80
.
37.
Fanghella
,
P.
, and
Galletti
,
C.
,
1995
, “
Metric Relations and Displacement Groups in Mechanism and Robot Kinematics
,”
ASME J. Mech. Des.
,
117
(3), pp.
470
478
.
38.
Lee
,
C.-C.
, and
Hervé
,
J. M.
,
2010
, “
Generators of the Product of Two Schoenflies Motion Groups
,”
Eur. J. Mech. – A/Solids
,
29
(
1)
, pp.
97
108
.
You do not currently have access to this content.