Dielectric elastomer (DE), as a group of electro-active polymers, has been widely used in soft robotics due to its inherent flexibility and large induced deformation. As sustained high voltage is needed to maintain the deformation of DE, it may result in electric breakdown for a long-period actuation. Inspired by the bistable mechanism which has two stable equilibrium positions and can stay at one of them without energy consumption, two bistable dielectric elastomer actuators (DEAs) including a translational actuator and a rotational actuator are proposed. Both the bistable actuators consist of a double conical DEA and a buckling beam and can switch between two stable positions with voltage. In this paper, the analytical models of the bulking beam and the conical DEA are presented first, and then the design method is demonstrated in terms of force equilibrium and moment equilibrium principle. The experiments of the translational bistable DEA and the rotational bistable DEA are conducted, which show that the design method of the bistable DEA is effective.

References

1.
Wang
,
N.
,
Cui
,
C.
,
Guo
,
H.
,
Chen
,
B.
, and
Zhang
,
X.
,
2017
, “
Advances in Dielectric Elastomer Actuation Technology
,”
Sci. China Technol. Sci.
,
61
(
10
), pp.
1512
1527
.
2.
Kovacs
,
G.
,
Düring
,
L.
,
Michel
,
S.
, and
Terrasi
,
G.
,
2009
, “
Stacked Dielectric Elastomer Actuator for Tensile Force Transmission
,”
Sens. Actuators A
,
155
(
2
), pp.
299
307
.
3.
Nguyen
,
C. T.
,
Phung
,
H.
,
Nguyen
,
T. D.
,
Lee
,
C.
,
Kim
,
U.
,
Lee
,
D.
,
Moon
,
H.
,
Koo
,
J.
,
do Nam
,
J.
, and
Choi
,
H. R.
,
2014
, “
A Small Biomimetic Quadruped Robot Driven by Multistacked Dielectric Elastomer Actuators
,”
Smart Mater. Struct.
,
23
(
6
), p.
065005
.
4.
Araromi
,
O. A.
,
Gavrilovich
,
I.
,
Shintake
,
J.
,
Rosset
,
S.
,
Richard
,
M.
,
Gass
,
V.
, and
Shea
,
H. R.
,
2015
, “
Rollable Multisegment Dielectric Elastomer Minimum Energy Structures for a Deployable Microsatellite Gripper
,”
IEEE/ASME Trans. Mechatron.
,
20
(
1
), pp.
438
446
.
5.
Berselli
,
G.
,
Vertechy
,
R.
,
Vassura
,
G.
, and
Castelli
,
V. P.
,
2009
, “
Design of a Single-Acting Constant-Force Actuator Based on Dielectric Elastomers
,”
ASME J. Mech. Rob.
,
1
(
3
), p.
031007
.
6.
Rosset
,
S.
,
Araromi
,
O. A.
,
Shintake
,
J.
, and
Shea
,
H. R.
,
2014
, “
Model and Design of Dielectric Elastomer Minimum Energy Structures
,”
Smart Mater. Struct.
,
23
(
8
), p.
085021
.
7.
Hodgins
,
M.
,
York
,
A.
, and
Seelecke
,
S.
,
2013
, “
Experimental Comparison of Bias Elements for Out-of-Plane Deap Actuator System
,”
Smart Mater. Struct.
,
22
(
9
), p.
094016
.
8.
Wang
,
N.
,
Guo
,
H.
,
Chen
,
B.
,
Cui
,
C.
, and
Zhang
,
X.
,
2018
, “
Design of a Rotary Dielectric Elastomer Actuator Using a Topology Optimization Method Based on Pairs of Curves
,”
Smart Mater. Struct.
,
27
(
5
), p.
055011
.
9.
Nguyen
,
C. T.
,
Phung
,
H.
,
Hoang
,
P. T.
,
Nguyen
,
T. D.
,
Jung
,
H.
, and
Choi
,
H. R.
,
2018
, “
Development of an Insect-Inspired Hexapod Robot Actuated by Soft Actuators
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061016
.
10.
Tang
,
C.
,
Li
,
B.
,
Fang
,
H.
,
Li
,
Z.
, and
Chen
,
H.
,
2018
, “
A Speedy, Amphibian, Robotic Cube: Resonance Actuation by a Dielectric Elastomer
,”
Sens. Actuators A
,
270
(
1
), pp.
1
7
.
11.
Branz
,
F.
, and
Francesconi
,
A.
,
2017
, “
Experimental Evaluation of a Dielectric Elastomer Robotic Arm for Space Applications
,”
Acta Astronaut.,
133
(
1
), pp.
324
333
.
12.
Shintake
,
J.
,
Rosset
,
S.
,
Schubert
,
B.
,
Floreano
,
D.
, and
Shea
,
H.
,
2016
, “
Versatile Soft Grippers With Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators
,”
Adv. Mater.
,
28
(
2
), pp.
231
238
.
13.
Zhao
,
J.
,
Niu
,
J.
,
McCoul
,
D.
,
Leng
,
J.
, and
Pei
,
Q.
,
2015
, “
A Rotary Joint for a Flapping Wing Actuated by Dielectric Elastomers: Design and Experiment
,”
Meccanica
,
50
(
11
), pp.
2815
2824
.
14.
Li
,
T.
,
Li
,
G.
,
Liang
,
Y.
,
Cheng
,
T.
,
Dai
,
J.
,
Yang
,
X.
,
Liu
,
B.
,
Zeng
,
Z.
,
Huang
,
Z.
, and
Luo
,
Y.
,
2017
, “
Fast-Moving Soft Electronic Fish
,”
Sci. Adv.
,
3
(
4
), p.
e1602045
.
15.
Branz
,
F.
, and
Francesconi
,
A.
,
2016
, “
Modelling and Control of Double-Cone Dielectric Elastomer Actuator
,”
Smart Mater. Struct.
,
25
(
9
), p.
095040
.
16.
Plante
,
J.-S.
, and
Dubowsky
,
S.
,
2006
, “
Large-Scale Failure Modes of Dielectric Elastomer Actuators
,”
Int. J. Solids Struct.
,
43
(
25–26
), pp.
7727
7751
.
17.
Chen
,
G.
,
Gou
,
Y.
, and
Zhang
,
A.
,
2011
, “
Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Mechanism
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081007
.
18.
Plante
,
J.-S.
,
Santer
,
M.
,
Dubowsky
,
S.
, and
Pellegrino
,
S.
,
2005
, “
Compliant Bistable Dielectric Elastomer Actuators for Binary Mechatronic Systems
,”
ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
.
19.
Chouinard
,
P.
, and
Plante
,
J.-S.
,
2012
, “
Bistable Antagonistic Dielectric Elastomer Actuators for Binary Robotics and Mechatronics
,”
IEEE/ASME Trans. Mechatron.
,
17
(
5
), pp.
857
865
.
20.
Follador
,
M.
,
Cianchetti
,
M.
, and
Mazzolai
,
B.
,
2015
, “
Design of a Compact Bistable Mechanism Based on Dielectric Elastomer Actuators
,”
Meccanica
,
50
(
11
), pp.
2741
2749
.
21.
Ma
,
F.
, and
Chen
,
G.
,
2016
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
.
22.
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers
,”
Acta Mech. Solida Sin.
,
23
(
6
), pp.
549
578
.
23.
Rizzello
,
G.
,
Naso
,
D.
,
Turchiano
,
B.
, and
Seelecke
,
S.
,
2016
, “
Robust Position Control of Dielectric Elastomer Actuators Based on LMI Optimization
,”
IEEE Trans. Control Syst. Technol.
,
24
(
6
), pp.
1909
1921
.
24.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.
25.
Conn
,
A. T.
,
Pearson
,
M. J.
,
Pipe
,
A. G.
,
Welsby
,
J.
, and
Rossiter
,
J.
,
2012
, “
Dielectric Elastomer Vibrissal System for Active Tactile Sensing,” Electroactive Polymer Actuators and Devices (EAPAD) 2012
,”
SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring
,
San Diego, CA
,
Mar. 11–15
.
26.
Hao
,
G.
, and
Mullins
,
J.
,
2015
, “
On the Infinitely-Stable Rotational Mechanism Using the Off-Axis Rotation of a Bistable Translational Mechanism
,”
Mech. Sci.
,
6
(
1
), pp.
75
80
.
You do not currently have access to this content.