Abstract

Walking rehabilitation using exoskeletons is of high importance to maximize independence and improve the general well-being of spinal cord injured subjects. We present the design and control of a lightweight and modular robotic exoskeleton to assist walking in spinal cord injured subjects who can control hip flexion, but lack control of knee and ankle muscles. The developed prototype consists of two robotic orthoses, which are powered by a motor-harmonic drive actuation system that controls knee flexion–extension. This actuation module is assembled on standard passive orthoses. Regarding the control, the stance-to-swing transition is detected using two inertial measurement units mounted on the tibial supports, and then the corresponding motor performs a predefined flexion–extension cycle that is personalized to the specific patient’s motor function. The system is portable by means of a backpack that contains an embedded computer board, the motor drivers, and the battery. A preliminary biomechanical evaluation of the gait-assistive device used by a female patient with incomplete spinal cord injury at T11 is presented. Results show an increase of gait speed (+24.11%), stride length (+7.41%), and cadence (+15.56%) when wearing the robotic orthoses compared with the case with passive orthoses. Conversely, a decrease of lateral displacement of the center of mass (−19.31%) and step width (−13.37% right step, −8.81% left step) are also observed, indicating gain of balance. The biomechanical assessment also reports an overall increase of gait symmetry when wearing the developed assistive device.

References

1.
Bickenbach
,
J.
,
Bodine
,
C.
,
Brown
,
D.
,
Burns
,
A.
,
Campbell
,
R.
,
Cardenas
,
D.
,
Charlifue
,
S.
,
Chen
,
Y.
,
Gray
,
D.
,
Li
,
L.
,
Officer
,
A.
,
Post
,
M.
,
Shakespeare
,
T.
,
Sinnott
,
A.
,
von Groote
,
P.
, and
Xiong
,
X.
,
2013
,
International Perspectives on Spinal Cord Injury
,
World Health Organization (WHO)
,
Geneva, Switzerland
.
2.
Behrman
,
A. L.
, and
Harkema
,
S. J.
,
2000
, “
Locomotor Training After Human Spinal Cord Injury: A Series of Case Studies
,”
Phys. Ther.
,
80
(
7
), pp.
688
700
. 10.1093/ptj/80.7.688
3.
Parent
,
S.
,
Mac-Thiong
,
J. M.
,
Roy-Beaudry
,
M.
,
Sosa
,
J. F.
, and
Labelle
,
H.
,
2011
, “
Spinal Cord Injury in the Pediatric Population: A Systematic Review of the Literature
,”
J. Neurotrauma
,
28
(
8
), pp.
1515
1524
. 10.1089/neu.2009.1153
4.
Ditunno
,
P. L.
,
Patrick
,
M.
,
Stineman
,
M.
, and
Ditunno
,
J. F.
,
2008
, “
Who Wants to Walk? Preferences for Recovery After SCI: A Longitudinal and Cross-Sectional Study
,”
Spinal Cord
,
46
(
7
), pp.
500
506
. 10.1038/sj.sc.3102172
5.
Calhoun
,
C. L.
,
Schottler
,
J.
, and
Vogel
,
L. C.
,
2013
, “
Recommendations for Mobility in Children With Spinal Cord Injury
,”
Top. Spinal Cord Injury Rehabil.
,
19
(
2
), pp.
142
151
. 10.1310/sci1902-142
6.
Hubli
,
M.
, and
Dietz
,
V.
,
2013
, “
The Physiological Basis of Neurorehabilitation—Locomotor Training After Spinal Cord Injury
,”
J. Neuroeng. Rehabil.
,
10
(
5
), pp.
1
8
. 10.1186/1743-0003-10-5
7.
Colombo
,
G.
,
Wirz
,
M.
, and
Dietz
,
V.
,
2001
, “
Driven Gait Orthosis for Improvement of Locomotor Training in Paraplegic Patients
,”
Spinal Cord
,
39
(
5
), pp.
252
255
. 10.1038/sj.sc.3101154
8.
Hesse
,
S.
, and
Uhlenbrock
,
D.
,
2000
, “
A Mechanized Gait Trainer for Restoration of Gait
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
701
708
.
9.
Schmidt
,
H.
,
Werner
,
C.
,
Bernhardt
,
R.
,
Hesse
,
S.
, and
Krüger
,
J.
,
2007
, “
Gait Rehabilitation Machines Based on Programmable Footplates
,”
J. Neuroeng. Rehabil.
,
4
(
2
), pp.
1
7
. 10.1186/1743-0003-4-2
10.
Strickland
,
E.
, “
Good-Bye, Wheelchair
,”
IEEE Spectr.
,
49
(
1
), pp.
30
32
. 10.1109/MSPEC.2012.6117830
11.
Esquenazi
,
A.
,
Talaty
,
M.
,
Packel
,
A.
, and
Saulino
,
M.
,
2012
, “
The ReWalk Powered Exoskeleton to Restore Ambulatory Function to Individuals With Thoracic-Level Motor-Complete Spinal Cord Injury
,”
Am. J. Phys. Med. Rehabil.
,
91
(
11
), pp.
911
921
. 10.1097/PHM.0b013e318269d9a3
12.
Hartigan
,
C.
,
Kandilakis
,
C.
,
Dalley
,
S.
,
Clausen
,
M.
,
Wilson
,
E.
,
Morrison
,
S.
,
Etheridge
,
S.
, and
Farris
,
R.
,
2015
, “
Mobility Outcomes Following Five Training Sessions With a Powered Exoskeleton
,”
Top. Spinal Cord Injury Rehabil.
,
21
(
2
), pp.
93
99
. 10.1310/sci2102-93
13.
Contreras-Vidal
,
J.
,
Bhagat
,
N. A.
,
Brantley
,
J.
,
Cruz-Garza
,
J. G.
,
He
,
Y.
,
Manley
,
Q.
,
Nakagome
,
S.
,
Nathan
,
K.
,
Tan
,
S. H.
,
Zhu
,
F.
, and
Pons
,
J. L.
,
2016
, “
Powered Exoskeletons for Bipedal Locomotion After Spinal Cord Injury
,”
J. Neural Eng.
,
13
(
3
), p.
031001
. 10.1088/1741-2560/13/3/031001
14.
Duerinck
,
S.
,
Swinnen
,
E.
,
Beyl
,
P.
,
Hagman
,
F.
,
Jonkers
,
I.
,
Vaes
,
P.
, and
Van Roy
,
P.
,
2012
, “
The Added Value of an Actuated Ankle-Foot Orthosis to Restore Normal Gait Function in Patients With Spinal Cord Injury: A Systematic Review
,”
J. Rehabil. Med.
,
44
(
4
), pp.
299
309
. 10.2340/16501977-0958
15.
Moltedo
,
M.
,
Bacek
,
T.
,
Junius
,
K.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2016
, “
Mechanical Design of a Lightweight Compliant and Adaptable Active Ankle Foot Orthosis
,”
Proceedings of the 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
Singapore
,
June 26–29, 2016
, pp.
1224
1229
.
16.
van Dijk
,
W.
,
Meijneke
,
C.
, and
van der Kooij
,
H.
,
2017
, “
Evaluation of the Achilles Ankle Exoskeleton
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
2
), pp.
151
160
. 10.1109/TNSRE.2016.2527780
17.
Chen
,
B.
,
Zi
,
B.
,
Wang
,
Z.
,
Qin
,
L.
, and
Liao
,
W. H.
,
2019
, “
Knee Exoskeletons for Gait Rehabilitation and Human Performance Augmentation: A State-of-the-Art
,”
Mech. Mach. Theory
,
134
, pp.
499
511
. 10.1016/j.mechmachtheory.2019.01.016
18.
Knaepen
,
K.
,
Beyl
,
P.
,
Duerinck
,
S.
,
Hagman
,
F.
,
Lefeber
,
D.
, and
Meeusen
,
R.
,
2014
, “
Human–Robot Interaction: Kinematics and Muscle Activity Inside a Powered Compliant Knee Exoskeleton
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
6
), pp.
1128
1137
. 10.1109/TNSRE.2014.2324153
19.
Kong
,
K.
,
Bae
,
J.
, and
Tomizuka
,
M.
,
2012
, “
A Compact Rotary Series Elastic Actuator for Human Assistive Systems
,”
IEEE/ASME Trans. Mechatron.
,
17
(
2
), pp.
288
297
. 10.1109/TMECH.2010.2100046
20.
Rifaï
,
H.
,
Mohammed
,
S.
,
Hassani
,
W.
, and
Amirat
,
Y.
,
2013
, “
Nested Saturation Based Control of an Actuated Knee Joint Orthosis
,”
Mechatronics
,
23
(
8
), pp.
1141
1149
. 10.1016/j.mechatronics.2013.09.007
21.
Liao
,
Y.
,
Zhou
,
Z.
, and
Wang
,
Q.
,
2015
, “
BioKEX: A Bionic Knee Exoskeleton With Proxy-Based Sliding Mode Control
,”
Proceedings of the IEEE International Conference on Industrial Technology (ICIT)
,
Seville, Spain
,
Mar. 17–19, 2015
, pp.
125
130
.
22.
Ma
,
H.
,
Chen
,
B.
,
Qin
,
L.
, and
Liao
,
W. H.
,
2017
, “
Design and Testing of a Regenerative Magnetorheological Actuator for Assistive Knee Braces
,”
Smart Mater. Struct.
,
26
(
3
), pp.
1
13
. 10.1088/1361-665X/aa57c5
23.
Beil
,
J.
,
Perner
,
G.
, and
Asfour
,
T.
,
2015
, “
Design and Control of the Lower Limb Exoskeleton KIT-EXO-1
,”
Proceedings of the IEEE International Conference on Rehabilitation Robotics
,
Singapore
,
Aug. 11–14, 2015
, pp.
119
124
.
24.
Yakimovich
,
T.
,
Lemaire
,
E. D.
, and
Kofman
,
J.
,
2009
, “
Engineering Design Review of Stance-Control Knee-Ankle-Foot Orthoses
,”
J. Rehabil. Res. Dev.
,
46
(
2
), pp.
257
267
. 10.1682/JRRD.2008.02.0024
25.
Shamaei
,
K.
,
Napolitano
,
P. C.
, and
Dollar
,
A. M.
,
2014
, “
Design and Functional Evaluation of a Quasi-Passive Compliant Stance Control Knee–Ankle–Foot Orthosis
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
2
), pp.
258
268
. 10.1109/TNSRE.2014.2305664
26.
Giovacchini
,
F.
,
Vannetti
,
F.
,
Fantozzi
,
M.
,
Cempini
,
M.
,
Cortese
,
M.
,
Parri
,
A.
,
Yan
,
T.
,
Lefeber
,
D.
, and
Vitiello
,
N.
,
2015
, “
A Light-Weight Active Orthosis for Hip Movement Assistance
,”
Rob. Autom. Syst.
,
73
, pp.
123
134
. 10.1016/j.robot.2014.08.015
27.
Nilsson
,
A.
,
Vreede
,
K. S.
,
Häglund
,
V.
,
Kawamoto
,
H.
,
Sankai
,
Y.
, and
Borg
,
J.
,
2014
, “
Gait Training Early After Stroke With a New Exoskeleton—The Hybrid Assistive Limb: A Study of Safety and Feasibility
,”
J. Neuroeng. Rehabil.
,
11
(
92
), pp.
1
10
. 10.1186/1743-0003-11-92
28.
Tsukahara
,
A.
,
Hasegawa
,
Y.
,
Eguchi
,
K.
, and
Sankai
,
Y.
,
2015
, “
Restoration of Gait for Spinal Cord Injury Patients Using HAL With Intention Estimator for Preferable Swing Speed
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
2
), pp.
308
318
. 10.1109/TNSRE.2014.2364618
29.
Veneman
,
J. F.
,
Kruidhof
,
R.
,
Hekman
,
E. E. G.
,
Ekkelenkamp
,
R.
,
Van Asseldonk
,
E. H. F.
, and
Van der Kooij
,
H.
,
2007
, “
Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
379
386
. 10.1109/TNSRE.2007.903919
30.
Bortole
,
M.
,
Venkatakrishnan
,
A.
,
Zhu
,
F.
,
Moreno
,
J. C.
,
Francisco
,
G. E.
,
Pons
,
J. L.
, and
Contreras-Vidal
,
J. L.
,
2015
, “
The H2 Robotic Exoskeleton for Gait Rehabilitation After Stroke: Early Findings From a Clinical Study
,”
J. Neuroeng. Rehabil.
,
12
(
54
), pp.
1
14
. 10.1186/s12984-015-0048-y
31.
Font-Llagunes
,
J. M.
,
Pàmies-Vilà
,
R.
,
Alonso
,
J.
, and
Lugrís
,
U.
,
2011
, “
Simulation and Design of an Active Orthosis for an Incomplete Spinal Cord Injured Subject
,”
Procedia IUTAM
,
2
, pp.
68
81
. 10.1016/j.piutam.2011.04.007
32.
Font-Llagunes
,
J. M.
,
Lugrís
,
U.
,
Romero
,
F.
,
Clos
,
D.
,
Alonso
,
F. J.
, and
Cuadrado
,
J.
,
2014
, “
Design of a Patient-Tailored Active Knee-Ankle-Foot Orthosis to Assist the Gait of Spinal Cord Injured Subjects
,”
Proceedings of the International Workshop on Wearable Robotics (WeRob)
,
Baiona, Spain
,
Sept. 14–19
,
Paper 54
, pp.
1
2
.
33.
Hong
,
Y. W.
,
King
,
Y. J.
,
Yeo
,
W. H.
,
Ting
,
C. H.
,
Chuah
,
Y. D.
,
Lee
,
J. V.
, and
Chok
,
E. T.
,
2014
, “
Lower Extremity Exoskeleton: Review and Challenges Surrounding the Technology and its Role in Rehabilitation of Lower Limbs
,”
Aust. J. Basic Appl. Sci.
,
7
(
7
), pp.
520
524
.
34.
Vallery
,
H.
,
Veneman
,
J.
,
van Asseldonk
,
E.
,
Ekkelenkamp
,
R.
,
Buss
,
M.
, and
van der Kooij
,
H.
,
2008
, “
Compliant Actuation of Rehabilitation Robots
,”
IEEE Rob. Autom Mag.
,
15
(
3
), pp.
60
69
. 10.1109/MRA.2008.927689
35.
Vanderborght
,
B.
,
Van Ham
,
R.
,
Lefeber
,
D.
,
Sugar
,
T. G.
, and
Hollander
,
K. W.
,
2009
, “
Comparison of Mechanical Design and Energy Consumption of Adaptable, Passive-Compliant Actuators
,”
Int. J. Rob. Res.
,
28
(
1
), pp.
90
103
. 10.1177/0278364908095333
36.
Bae
,
J.
,
Kong
,
K.
, and
Tomizuka
,
M.
,
2011
, “
Gait Phase-Based Control for a Rotary Series Elastic Actuator Assisting the Knee Joint
,”
ASME J. Med. Devices
,
5
(
3
), p.
031010
. 10.1115/1.4004793
37.
Lugrís
,
U.
,
Carlín
,
J.
,
Luaces
,
A.
, and
Cuadrado
,
J.
, “
Gait Analysis System for Spinal Cord Injured Subjects Assisted by Active Orthoses and Crutches
,”
J. Multi-Body Dyn.
,
227
(
4
), pp.
363
374
. 10.1177/1464419313494935
38.
Robinson
,
R. O.
,
Herzog
,
W.
, and
Nigg
,
B. M.
,
1987
, “
Use of Force Platform Variables to Quantify the Effects of Chiropractic Manipulation on Gait Symmetry
,”
J. Manipulative Physiol. Ther.
,
10
(
4
), pp.
172
176
.
39.
Sadeghi
,
H.
,
Allard
,
P.
,
Prince
,
F.
, and
Labelle
,
H.
,
2000
, “
Symmetry and Limb Dominance in Able-Bodied Gait: A Review
,”
Gait and Posture
,
12
(
1
), pp.
34
45
. 10.1016/S0966-6362(00)00070-9
40.
Vaughan
,
C. L.
,
Davis
,
B. L.
, and
O’Connor
,
J. C.
,
1999
,
Dynamics of Human Gait
, 2nd ed.,
Kiboho Publishers
,
Cape Town, South Africa
.
41.
Ambrosio
,
J. A. C.
, and
Kecskemethy
,
A.
,
2007
,
Multibody Dynamics. Computational Methods in Applied Sciences
,
J. C.
Garcia Orden
,
J. M.
Goicolea
, and
J.
Cuadrado
, eds.,
Springer
,
Dordrecht, Netherlands
, pp.
245
272
.
42.
Lugrís
,
U.
,
Carlín
,
J.
,
Pàmies-Vilà
,
R.
,
Font-Llagunes
,
J. M.
, and
Cuadrado
,
J.
,
2013
, “
Solution Methods for the Double-Support Indeterminacy in Human Gait
,”
Multibody Sys. Dyn.
,
30
(
3
), pp.
247
263
. 10.1007/s11044-013-9363-x
43.
Golyandina
,
N.
,
Nekrutkin
,
V.
, and
Zhigljavsky
,
A.
,
2001
,
Analysis of Time Series Structure: SSA and Related Techniques
,
Chapman & Hall/CRC
,
Washington, DC
.
44.
Alonso
,
F. J.
,
Cuadrado
,
J.
,
Lugrís
,
U.
, and
Pintado
,
P.
,
2010
, “
A Compact Smoothing–Differentiation and Projection Approach for the Kinematic Data Consistency of Biomechanical Systems
,”
Multibody Sys. Dyn.
,
24
(
1
), pp.
67
80
. 10.1007/s11044-010-9191-1
45.
Pietrusinski
,
M.
,
Cajigas
,
I.
,
Severini
,
G.
,
Bonato
,
P.
, and
Mavroidis
,
C.
,
2014
, “
Robotic Gait Rehabilitation Trainer
,”
IEEE/ASME Trans. Mechatron.
,
19
(
2
), pp.
490
499
. 10.1109/TMECH.2013.2243915
You do not currently have access to this content.