Abstract

In this paper, the synthesis of any planar compliance with a six-component compliant mechanism is addressed. The mechanisms studied are either serial mechanisms with six elastic joints or parallel mechanisms with six springs. For each type of mechanism, conditions on the mechanism configurations that must be satisfied to realize a given compliance are developed. The geometric significance of each condition is identified and graphically represented. Geometric construction-based synthesis procedures for both types of mechanism are developed. These procedures allow one to select each elastic component from a restricted space based on its geometry.

References

1.
Huang
,
S.
, and
Schimmels
,
J. M.
,
1998
, “
The Bounds and Realization of Spatial Stiffnesses Achieved With Simple Springs Connected in Parallel
,”
IEEE Trans. Rob. Autom.
,
14
(
3
), pp.
466
475
. 10.1109/70.678455
2.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2000
, “
The Bounds and Realization of Spatial Compliances Achieved With Simple Serial Elastic Mechanisms
,”
IEEE Trans. Rob. Autom.
,
16
(
1
), pp.
99
103
. 10.1109/70.833197
3.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2002
, “
The Duality in Spatial Stiffness and Compliance As Realized in Parallel and Serial Elastic Mechanisms
,”
ASME J. Dyn. Syst. Meas. Control
,
124
(
1
), pp.
76
84
. 10.1115/1.1434273
4.
Ham
,
R. V.
,
Sugar
,
T. G.
,
Vanderborght
,
B.
,
Hollander
,
K. W.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuator Designs: Review of Actuators With Passive Adjustable Compliance/controllable Stiffness for Robotic Applications
,”
IEEE Robot. Autom. Mag.
,
16
(
3
), pp.
81
94
. 10.1109/MRA.2009.933629
5.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
London, U.K.
,
Cambridge University Press
.
6.
Dimentberg
,
F. M.
,
1965
,
The Screw Calculus and its Applications in Mechanics. Foreign Technology Division
,
Wright-Patterson Air Force Base
,
Dayton, Ohio
.
Document No. FTD-HT-23-1632-67
.
7.
Griffis
,
M.
, and
Duffy
,
J.
,
1991
, “
Kinestatic Control: A Novel Theory for Simultaneously Regulating Force and Displacement
,”
ASME J. Mech. Des.
,
113
(
4
), pp.
508
515
. 10.1115/1.2912812
8.
Patterson
,
T.
, and
Lipkin
,
H.
,
1993
, “
Structure of Robot Compliance
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
576
580
. 10.1115/1.2919228
9.
Loncaric
,
J.
,
1987
, “
Normal Forms of Stiffness and Compliance Matrices
,”
IEEE J. Robot. Autom.
,
3
(
6
), pp.
567
572
. 10.1109/JRA.1987.1087148
10.
Roberts
,
R. G.
,
1999
, “
Minimal Realization of a Spatial Stiffness Matrix With Simple Springs Connected in Parallel
,”
IEEE Trans. Rob. Autom.
,
15
(
5
), pp.
953
958
. 10.1109/70.795799
11.
Ciblak
,
N.
, and
Lipkin
,
H.
,
1999
, “
Synthesis of Cartesian Stiffness for Robotic Applications
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Detroit, MI
,
May 10–15
, pp.
2147
2152
.
12.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2000
, “
The Eigenscrew Decomposition of Spatial Stiffness Matrices
,”
IEEE Trans. Rob. Autom.
,
16
(
2
), pp.
146
156
. 10.1109/70.843170
13.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2001
, “
A Classification of Spatial Stiffness Based on the Degree of Translational–Rotational Coupling
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
353
358
. 10.1115/1.1374197
14.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2001
, “
Minimal Realizations of Spatial Stiffnesses With Parallel or Serial Mechanisms Having Concurrent Axes
,”
J. Robot. Syst.
,
18
(
3
), pp.
135
146
. 10.1002/rob.1011
15.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2002
, “
Realization of Those Elastic Behaviors That Have Compliant Axes in Compact Elastic Mechanisms
,”
J. Robot. Syst.
,
19
(
3
), pp.
143
154
. 10.1002/rob.10029
16.
Choi
,
K.
,
Jiang
,
S.
, and
Li
,
Z.
,
2002
, “
Spatial Stiffness Realization With Parallel Springs Using Geometric Parameters
,”
IEEE Trans. Rob. Autom.
,
18
(
3
), pp.
264
284
. 10.1109/tra.2002.1019458
17.
Hong
,
M. B.
, and
Choi
,
Y. J.
,
2009
, “
Screw System Approach to Physical Realization of Stiffness Matrix With Arbitrary Rank
,”
ASME J. Mech. Robot.
,
1
(
2
), p.
021007
. 10.1115/1.3046146
18.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2011
, “
Realization of an Arbitrary Planar Stiffness with a Simple Symmetric Parallel Mechanism
,”
ASME J. Mech. Robot.
,
3
(
4
), p.
041006
. 10.1115/1.4004894
19.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2018
, “
Geometric Construction-Based Realization of Spatial Elastic Behaviors in Parallel and Serial Manipulators
,”
IEEE Trans. Robot.
,
34
(
3
), pp.
764
780
. 10.1109/TRO.2018.2805315
20.
Su
,
H.-J.
,
Dorozhin
,
D.
, and
Vance
,
J.
,
2009
, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
ASME J. Mech. Robot.
,
1
(
4
), p.
041009
. 10.1115/1.3211024
21.
Su
,
H.-J.
,
Zhou
,
L.
, and
Zhang
,
Y.
,
2014
,
Mobility Analysis and Type Synthesis With Screw Theory: From Rigid Body Linkages to Compliant Mechanisms
, Vol.
4
,
Springer
,
Heidelberg
.
22.
Yu
,
J.
,
Li
,
S.
,
Su
,
H.-J.
, and
Culpepper
,
M. L.
,
2011
, “
Screw Theory Based Methodology for the Deterministic Type Synthesis of Flexure Mechanisms
,”
ASME J. Mech. Robot.
,
3
(
3
), p.
031008
. 10.1115/1.4004123
23.
Simaan
,
N.
, and
Shoham
,
M.
,
2003
, “
Stiffness Synthesis of a Variable Geometry Six-Degrees-of-Freedom Double Planar Parallel Robot
,”
Int. J. Robot. Res.
,
22
(
9
), pp.
757
775
. 10.1177/02783649030229005
24.
Wen
,
K.
,
Shin
,
C.-B.
,
Seo
,
T.-W.
, and
Lee
,
J.-W.
,
2016
, “
Stiffness Synthesis of 3-DOF Planar 3RPR Parallel Mechanisms
,”
Robotica
,
34
(
12
), pp.
2776
2787
. 10.1017/S0263574715000363
25.
Hao
,
G.
,
Yu
,
J.
, and
Liu
,
Y.
,
2018
, “
Compliance Synthesis of a Class of Planar Compliant Parallelogram Mechanisms Using the Position Space Concept
,”
2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR 2018)
,
Delft, Netherlands
,
June 20–22
.
26.
Verotti
,
M.
,
Dochshanov
,
A.
, and
Belfiore
,
N. P.
,
2017
, “
Compliance Synthesis of CSFH MEMS-Based Microgrippers
,”
ASME J. Mech. Des.
,
139
(
2
), p.
022301
. 10.1115/1.4035053
27.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2017
, “
Geometric Construction-based Realization of Planar Elastic Behaviors With Parallel and Serial Manipulators
,”
ASME J. Mech. Robot.
,
9
(
5
), p.
051006
. 10.1115/1.4037019
28.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2018
, “
Geometric Approach to the Realization of Planar Elastic Behaviors With Mechanisms Having Four Elastic Components
,”
ASME J. Mech. Robot.
,
10
(
4
), p.
041004
. 10.1115/1.4039399
29.
Huang
,
S.
, and
Schimmels
,
J. M.
,
2019
, “
Geometry Based Synthesis of Planar Compliances with Redundant Mechanisms Having Five Compliant Components
,”
Mech. Mach. Theory.
,
134
, pp.
645
666
. 10.1016/j.mechmachtheory.2018.12.021
You do not currently have access to this content.