Abstract
In this paper, the synthesis of any planar compliance with a six-component compliant mechanism is addressed. The mechanisms studied are either serial mechanisms with six elastic joints or parallel mechanisms with six springs. For each type of mechanism, conditions on the mechanism configurations that must be satisfied to realize a given compliance are developed. The geometric significance of each condition is identified and graphically represented. Geometric construction-based synthesis procedures for both types of mechanism are developed. These procedures allow one to select each elastic component from a restricted space based on its geometry.
Issue Section:
Research Papers
References
1.
Huang
, S.
, and Schimmels
, J. M.
, 1998
, “The Bounds and Realization of Spatial Stiffnesses Achieved With Simple Springs Connected in Parallel
,” IEEE Trans. Rob. Autom.
, 14
(3
), pp. 466
–475
. 10.1109/70.6784552.
Huang
, S.
, and Schimmels
, J. M.
, 2000
, “The Bounds and Realization of Spatial Compliances Achieved With Simple Serial Elastic Mechanisms
,” IEEE Trans. Rob. Autom.
, 16
(1
), pp. 99
–103
. 10.1109/70.8331973.
Huang
, S.
, and Schimmels
, J. M.
, 2002
, “The Duality in Spatial Stiffness and Compliance As Realized in Parallel and Serial Elastic Mechanisms
,” ASME J. Dyn. Syst. Meas. Control
, 124
(1
), pp. 76
–84
. 10.1115/1.14342734.
Ham
, R. V.
, Sugar
, T. G.
, Vanderborght
, B.
, Hollander
, K. W.
, and Lefeber
, D.
, 2009
, “Compliant Actuator Designs: Review of Actuators With Passive Adjustable Compliance/controllable Stiffness for Robotic Applications
,” IEEE Robot. Autom. Mag.
, 16
(3
), pp. 81
–94
. 10.1109/MRA.2009.9336295.
Ball
, R. S.
, 1900
, A Treatise on the Theory of Screws
, London, U.K.
, Cambridge University Press
.6.
Dimentberg
, F. M.
, 1965
, The Screw Calculus and its Applications in Mechanics. Foreign Technology Division
, Wright-Patterson Air Force Base
, Dayton, Ohio
. Document No. FTD-HT-23-1632-67
.7.
Griffis
, M.
, and Duffy
, J.
, 1991
, “Kinestatic Control: A Novel Theory for Simultaneously Regulating Force and Displacement
,” ASME J. Mech. Des.
, 113
(4
), pp. 508
–515
. 10.1115/1.29128128.
Patterson
, T.
, and Lipkin
, H.
, 1993
, “Structure of Robot Compliance
,” ASME J. Mech. Des.
, 115
(3
), pp. 576
–580
. 10.1115/1.29192289.
Loncaric
, J.
, 1987
, “Normal Forms of Stiffness and Compliance Matrices
,” IEEE J. Robot. Autom.
, 3
(6
), pp. 567
–572
. 10.1109/JRA.1987.108714810.
Roberts
, R. G.
, 1999
, “Minimal Realization of a Spatial Stiffness Matrix With Simple Springs Connected in Parallel
,” IEEE Trans. Rob. Autom.
, 15
(5
), pp. 953
–958
. 10.1109/70.79579911.
Ciblak
, N.
, and Lipkin
, H.
, 1999
, “Synthesis of Cartesian Stiffness for Robotic Applications
,” Proceedings of the IEEE International Conference on Robotics and Automation
, Detroit, MI
, May 10–15
, pp. 2147
–2152
.12.
Huang
, S.
, and Schimmels
, J. M.
, 2000
, “The Eigenscrew Decomposition of Spatial Stiffness Matrices
,” IEEE Trans. Rob. Autom.
, 16
(2
), pp. 146
–156
. 10.1109/70.84317013.
Huang
, S.
, and Schimmels
, J. M.
, 2001
, “A Classification of Spatial Stiffness Based on the Degree of Translational–Rotational Coupling
,” ASME J. Mech. Des.
, 123
(3
), pp. 353
–358
. 10.1115/1.137419714.
Huang
, S.
, and Schimmels
, J. M.
, 2001
, “Minimal Realizations of Spatial Stiffnesses With Parallel or Serial Mechanisms Having Concurrent Axes
,” J. Robot. Syst.
, 18
(3
), pp. 135
–146
. 10.1002/rob.101115.
Huang
, S.
, and Schimmels
, J. M.
, 2002
, “Realization of Those Elastic Behaviors That Have Compliant Axes in Compact Elastic Mechanisms
,” J. Robot. Syst.
, 19
(3
), pp. 143
–154
. 10.1002/rob.1002916.
Choi
, K.
, Jiang
, S.
, and Li
, Z.
, 2002
, “Spatial Stiffness Realization With Parallel Springs Using Geometric Parameters
,” IEEE Trans. Rob. Autom.
, 18
(3
), pp. 264
–284
. 10.1109/tra.2002.101945817.
Hong
, M. B.
, and Choi
, Y. J.
, 2009
, “Screw System Approach to Physical Realization of Stiffness Matrix With Arbitrary Rank
,” ASME J. Mech. Robot.
, 1
(2
), p. 021007
. 10.1115/1.304614618.
Huang
, S.
, and Schimmels
, J. M.
, 2011
, “Realization of an Arbitrary Planar Stiffness with a Simple Symmetric Parallel Mechanism
,” ASME J. Mech. Robot.
, 3
(4
), p. 041006
. 10.1115/1.400489419.
Huang
, S.
, and Schimmels
, J. M.
, 2018
, “Geometric Construction-Based Realization of Spatial Elastic Behaviors in Parallel and Serial Manipulators
,” IEEE Trans. Robot.
, 34
(3
), pp. 764
–780
. 10.1109/TRO.2018.280531520.
Su
, H.-J.
, Dorozhin
, D.
, and Vance
, J.
, 2009
, “A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,” ASME J. Mech. Robot.
, 1
(4
), p. 041009
. 10.1115/1.321102421.
Su
, H.-J.
, Zhou
, L.
, and Zhang
, Y.
, 2014
, Mobility Analysis and Type Synthesis With Screw Theory: From Rigid Body Linkages to Compliant Mechanisms
, Vol. 4
, Springer
, Heidelberg
.22.
Yu
, J.
, Li
, S.
, Su
, H.-J.
, and Culpepper
, M. L.
, 2011
, “Screw Theory Based Methodology for the Deterministic Type Synthesis of Flexure Mechanisms
,” ASME J. Mech. Robot.
, 3
(3
), p. 031008
. 10.1115/1.400412323.
Simaan
, N.
, and Shoham
, M.
, 2003
, “Stiffness Synthesis of a Variable Geometry Six-Degrees-of-Freedom Double Planar Parallel Robot
,” Int. J. Robot. Res.
, 22
(9
), pp. 757
–775
. 10.1177/0278364903022900524.
Wen
, K.
, Shin
, C.-B.
, Seo
, T.-W.
, and Lee
, J.-W.
, 2016
, “Stiffness Synthesis of 3-DOF Planar 3RPR Parallel Mechanisms
,” Robotica
, 34
(12
), pp. 2776
–2787
. 10.1017/S026357471500036325.
Hao
, G.
, Yu
, J.
, and Liu
, Y.
, 2018
, “Compliance Synthesis of a Class of Planar Compliant Parallelogram Mechanisms Using the Position Space Concept
,” 2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR 2018)
, Delft, Netherlands
, June 20–22
.26.
Verotti
, M.
, Dochshanov
, A.
, and Belfiore
, N. P.
, 2017
, “Compliance Synthesis of CSFH MEMS-Based Microgrippers
,” ASME J. Mech. Des.
, 139
(2
), p. 022301
. 10.1115/1.403505327.
Huang
, S.
, and Schimmels
, J. M.
, 2017
, “Geometric Construction-based Realization of Planar Elastic Behaviors With Parallel and Serial Manipulators
,” ASME J. Mech. Robot.
, 9
(5
), p. 051006
. 10.1115/1.403701928.
Huang
, S.
, and Schimmels
, J. M.
, 2018
, “Geometric Approach to the Realization of Planar Elastic Behaviors With Mechanisms Having Four Elastic Components
,” ASME J. Mech. Robot.
, 10
(4
), p. 041004
. 10.1115/1.403939929.
Huang
, S.
, and Schimmels
, J. M.
, 2019
, “Geometry Based Synthesis of Planar Compliances with Redundant Mechanisms Having Five Compliant Components
,” Mech. Mach. Theory.
, 134
, pp. 645
–666
. 10.1016/j.mechmachtheory.2018.12.021Copyright © 2020 by ASME
You do not currently have access to this content.