Abstract

This paper presents a novel Schönflies-motion Parallel Manipulator with RotationalPitch motion (SPM-RP) based on a single-platform fully parallel mechanism. An analysis of the position, workspace, velocity, and singularity of the SPM-RP is carried out in detail, and a dimensionless Jacobian is proposed to evaluate the manipulability of the SPM-RP. The analysis shows that the SPM-RP is with position-decoupled kinematics, a large singularity-free workspace, and excellent manipulability. The SPM-RP is actuated by four parallel prismatic actuators, enabling the manipulator to provide the identical kinematic performance at all generic cross sections perpendicular to the prismatic joint axes within its workspace. This paper thus proposes a reduced design optimization formulation, where the traditional optimization over the entire workspace is reduced to the optimization on a representative workspace cross section of the SPM-RP. According to this approach, the design optimization of the SPM-RP is carried out by maximizing its manipulability over the total orientation workspace, which is crucial for precision assembly. Based on the achieved optimal design, an SPM-RP prototype is developed. The mobility, orientation capability, total orientation workspace, and repeatability of the optimal design are tested and verified by the developed SPM-RP prototype. Experiments show that the SPM-RP can achieve a large total orientation workspace with excellent precision performance.

References

1.
Angeles
,
J.
,
Caro
,
S.
,
Khan
,
W.
, and
Morozov
,
A.
,
2006
, “
Kinetostatic Design of An Innovative Schönflies-Motion Generator
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
220
(
7
), pp.
935
943
.
2.
Makino
,
H.
, and
Furuya
,
N.
,
1980
, “
Selective Compliance Assembly Robot Arm
,”
Proceeedings of 1st International Conference on Assembly Automation (ICAA)
,
Brighton, UK
.
3.
Pierrot
,
F.
,
Reynaud
,
C.
, and
Fournier
,
A.
,
1990
, “
DELTA: A Simple and Efficient Parallel Robot
,”
Robotica
,
8
(
2
), pp.
105
109
.
4.
Pierrot
,
F.
, and
Company
,
O.
,
1999
, “
H4: A New Family of 4-DOF Parallel Robots
,”
1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat No.99TH8399)
,
Atlanta, GA
, pp.
508
513
.
5.
Briot
,
S.
, and
Bonev
,
I. A.
,
2010
, “
Pantopteron-4: A New 3T1R Decoupled Parallel Manipulator for Pick-and-Place Applications
,”
Mech. Mach. Theory.
,
45
(
5
), pp.
707
721
.
6.
Schreiber
,
L.-T.
, and
Gosselin
,
C.
,
2019
, “
Schönflies Motion PARAllel Robot (SPARA): A Kinematically Redundant Parallel Robot With Unlimited Rotation Capabilities
,”
IEEE/ASME Trans. Mech.
,
24
(
5
), pp.
2273
2281
.
7.
Kim
,
S. M.
,
Yi
,
B. -J.
,
Cheong
,
J.
,
Kim
,
M. G.
, and
Kim
,
W.
,
2018
, “
Implementation of a Revolute-Joint-Based Asymmetric Schönflies Motion Haptic Device With Redundant Actuation
,”
Mechatronics
,
50
, pp.
87
103
.
8.
Wu
,
G.
,
Bai
,
S.
, and
Hjørnet
,
P.
,
2016
, “
Architecture Optimization of a Parallel Schönflies-motion Robot for Pick-and-Place Applications in a Predefined Workspace
,”
Mech. Mach. Theory.
,
106
, pp.
148
165
.
9.
Li
,
Q.
, and
Herve
,
J. M.
,
2009
, “
Parallel Mechanisms With Bifurcation of Schoenflies Motion
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
158
164
.
10.
Xie
,
F.
, and
Liu
,
X.-J.
,
2015
, “
Design and Development of a High-Speed and High-Rotation Robot With Four Identical Arms and a Single Platform
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041015
.
12.
Li
,
Z.
,
Lou
,
Y.
,
Zhang
,
Y.
,
Liao
,
B.
, and
Li
,
Z.
,
2013
, “
Type Synthesis, Kinematic Analysis, and Optimal Design of a Novel Class of Schönflies-Motion Parallel Manipulators
,”
IEEE Trans. Auto. Sci. Eng.
,
10
(
3
), pp.
674
686
.
13.
Xie
,
F.
, and
Liu
,
X.-J.
,
2016
, “
Analysis of the Kinematic Characteristics of a High-speed Parallel Robot with Schönflies Motion: Mobility, Kinematics, and Singularity
,”
Front. Mech. Eng.
,
11
(
2
), pp.
135
143
.
14.
Krut
,
S.
,
Benoit
,
M.
,
Ota
,
H.
, and
Pierrot
,
F.
,
2003
, “
I4: A New Parallel Mechanism for Scara Motions
,”
2003 IEEE International Conference on Robotics and Automation (Cat, No.03CH37422)
,
Taipei, Taiwan
, Vol.
2
, pp.
1875
1880
.
15.
Corbel
,
D.
,
Gouttefarde
,
M.
,
Company
,
O.
, and
Pierrot
,
F.
,
2010
, “
Actuation Redundancy As a Way to Improve the Acceleration Capabilities of 3T and 3T1R Pick-and-Place Parallel Manipulators
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041002
.
16.
Nabat
,
V.
,
Company
,
O.
,
Krut
,
S.
, and
Pierrot
,
F.
,
2005
, “
Par4: Very High Speed Parallel Robot for Pick-and-place
,”
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Edmonton, AB, Canada
, pp.
553
558
.
17.
Company
,
O.
,
Krut
,
S.
, and
Pierrot
,
F.
,
2006
, “
Internal Singularity Analysis of a Class of Lower Mobility Parallel Manipulators With Articulated Traveling Plate
,”
IEEE Trans. Rob.
,
22
(
1
), pp.
1
11
.
18.
Kim
,
S. M.
,
Kim
,
W.
, and
Yi
,
B. -J.
,
2009
, “
Kinematic Analysis and Optimal Design of a 3T1R Type Parallel Mechanism
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
, pp.
2199
2204
.
19.
Wu
,
G.
,
Lin
,
Z.
,
Zhao
,
W.
,
Zhang
,
S.
,
Shen
,
H.
, and
Caro
,
S.
,
2020
, “
A Four-limb Parallel Schönflies Motion Generator With Full-circle End-effector Rotation
,”
Mech. Mach. Theory.
,
146
, p.
103711
.
20.
Gosselin
,
C.
,
Isaksson
,
M.
,
Marlow
,
K.
, and
Laliberté
,
T.
,
2016
, “
Workspace and Sensitivity Analysis of a Novel Nonredundant Parallel SCARA Robot Featuring Infinite Tool Rotation
,”
IEEE Rob. Auto. Lett.
,
1
(
2
), pp.
776
783
.
23.
Salgado
,
O.
,
Altuzarra
,
O.
,
Amezua
,
E.
, and
Hernández
,
A.
,
2007
, “
A Parallelogram-Based Parallel Manipulator for Schönflies Motion
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1243
1250
.
24.
Kim
,
S. M.
,
Kim
,
W.
, and
Yi
,
B.-J.
,
2009
, “
Kinematic Analysis and Design of a New 3T1R 4-DOF Parallel Mechanism with Rotational Pitch Motion
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
, IEEE, pp.
5167
5172
.
25.
Wu
,
G.
,
2017
, “
Kinematic Analysis and Optimal Design of a Wall-mounted Four-limb Parallel Schönflies-Motion Robot for Pick-and-Place Operations
,”
J. Intell. Rob. Syst.
,
85
(
3–4
), pp.
663
677
.
26.
Malekpour
,
M.
,
Kaviany
,
F.
,
FesharakiFard
,
R.
, and
Khosravi
,
M. A.
,
2019
, “
Kinematic Analysis and Optimal Design of a New 3T1R Parallel Mechanism
,”
2019 7th International Conference on Robotics and Mechatronics (ICRoM)
,
Tehran, Iran
, pp.
544
551
.
27.
Lou
,
Y.
, and
Li
,
Z.
,
2006
, “
A Novel 3-DoF Purely Translational Parallel Mechanism
,”
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
, pp.
2144
2149
.
28.
Meng
,
J.
,
Liu
,
G.
, and
Li
,
Z.
,
2007
, “
A Geometric Theory for Analysis and Synthesis of Sub-6 DoF Parallel Manipulators
,”
IEEE Trans. Rob.
,
23
(
4
), pp.
625
649
.
29.
Murray
,
R. M.
,
Li
,
Z.
,
Sastry
,
S. S.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
London, UK
.
30.
Yang
,
G.
,
Chen
,
I-M.
,
Lin
,
W.
, and
Angeles
,
J.
,
2001
, “
Singularity Analysis of Three-legged Parallel Robots Based on Passive-joint Velocities
,”
IEEE. Trans. Rob. Autom.
,
17
(
4
), pp.
413
422
.
31.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
2nd (
No. 74 in Solid Mechanics and Its Applications
),
Kluwer Academic Publishers
,
Dordrecht, Boston, MA
.
32.
Kim
,
S. G.
, and
Ryu
,
J.
,
2003
, “
New Dimensionally Homogeneous Jacobian Matrix Formulation by Three End-Effector Points for Optimal Design of Parallel Manipulators
,”
IEEE. Trans. Rob. Autom.
,
19
(
4
), pp.
731
736
.
33.
Doty
,
K.
,
Melchiorri
,
C.
,
Schwartz
,
E.
, and
Bonivento
,
C.
,
1995
, “
Robot Manipulability
,”
IEEE. Trans. Rob. Autom.
,
11
(
3
), pp.
462
468
.
34.
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2011
, “
A Method to Formulate a Dimensionally Homogeneous Jacobian of Parallel Manipulators
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
150
156
.
35.
Ma
,
O.
, and
Angeles
,
J.
,
1991
, “
Optimum Architecture Design of Platform Manipulators
,”
Fifth International Conference on Advanced Robotics Robots in Unstructured Environments
,
Pisa, Italy
, Vol.
2
, pp.
1130
1135
.
36.
Zanganeh
,
K. E.
, and
Angeles
,
J.
,
1997
, “
Kinematic Isotropy and the Optimum Design of Parallel Manipulators
,”
Int. J. Rob. Res.
,
16
(
2
), pp.
185
197
.
37.
Gosselin
,
C. M.
,
1992
, “
The Optimum Design of Robotic Manipulators Using Dexterity Indices
,”
Rob. Auton. Syst.
,
9
(
4
), pp.
213
226
.
38.
Pond
,
G.
, and
Carretero
,
J. A.
,
2006
, “
Formulating Jacobian Matrices for the Dexterity Analysis of Parallel Manipulators
,”
Mech. Mach. Theory.
,
41
(
12
), pp.
1505
1519
.
39.
Gosselin
,
C.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.
40.
Hedelind
,
M.
, and
Kock
,
S.
,
2011
, “
Requirements on Flexible Robot Systems for Small Parts Assembly: A Case Study
,”
2011 IEEE International Symposium on Assembly and Manufacturing (ISAM)
,
Tampere, Finland
, pp.
1
7
.
41.
Ge
,
J.
,
Chi
,
Z.
, and
Li
,
Q.
,
2014
, “
Small Part Assembly With Dual Arm Robot and Smart Camera
,”
ISR/Robotik 2014; 41st International Symposium on Robotics
,
Munich, Germany
, pp.
286
291
.
You do not currently have access to this content.