Abstract

In this paper, the concept of underactuated redundancy is presented using a novel spatial two-degrees-of-freedom (2-DoF) gravity-balanced rotational manipulator, composed of movable counterweights. The proposed kinematic arrangement makes it possible to intuitively manipulate a payload undergoing 3-DoF spatial rotations by adding a third rotational axis oriented in the direction of gravity. The static equilibrium equations of the 2-DoF architecture are first described in order to provide the required configuration of the counterweights for a statically balanced mechanism. A method for calibrating the mechanism, which establishes the coefficients of the static equilibrium equations, is also presented. In order to both translate and rotate the payload during manipulation, the rotational manipulator is mounted on an existing translational manipulator. Experimental validations of both systems are presented to demonstrate the intuitive and responsive behavior of the manipulators during physical human–robot interactions.

References

1.
Krüger
,
J.
,
Lien
,
T.
, and
Verl
,
A.
,
2009
, “
Cooperation of Human and Machines in Assembly Lines
,”
CIRP Ann. Manuf. Technol.
,
58
(
2
), pp.
628
646
.
2.
Cherubini
,
A.
,
Passama
,
R.
,
Crosnier
,
A.
,
Lasnier
,
A.
, and
Fraisse
,
P.
,
2016
, “
Collaborative Manufacturing With Physical Human–Robot Interaction
,”
Robot. Comput. Integr. Manuf.
,
40
(
1
), pp.
1
13
.
3.
Bonev
,
I.
,
2014
, “
Should We Fence the Arms of Universal Robots?
” [Online], http://coro.etsmtl.ca/blog/?p=299, Accessed October 16, 2019.
4.
van der Linde
,
R.
, and
Lammertse
,
P.
,
2003
, “
Hapticmaster—A Generic Force Controlled Robot for Human Interaction
,”
Ind. Robot Int. J.
,
30
(
6
), pp.
515
524
.
5.
Lecours
,
A.
,
Mayer-St-Onge
,
B.
, and
Gosselin
,
C.
,
2012
, “
Variable Admittance Control of a Four-Degree-of-Freedom Intelligent Assist Device
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
St. Paul, MN
,
May 14–19
, pp.
3903
3908
.
6.
Newman
,
W. S.
, and
Zhang
,
Y.
,
1994
, “
Stable Interaction Control and Coulomb Friction Compensation Using Natural Admittance Control
,”
J. Robot. Syst.
,
11
(
1
), pp.
3
11
.
7.
Buerger
,
S.
, and
Hogan
,
N.
,
2007
, “
Complementary Stability and Loop Shaping for Improved Human–Robot Interaction
,”
IEEE Trans. Robot.
,
23
(
2
), pp.
232
244
.
8.
Hogan
,
N.
,
1988
, “
On the Stability of Manipulators Performing Contact Tasks
,”
IEEE J. Robot. Autom.
,
4
(
6
), pp.
677
686
.
9.
Colgate
,
E.
, and
Hogan
,
N.
,
1989
, “
An Analysis of Contact Instability in Terms of Passive Physical Equivalents
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Scottsdale, AZ
,
May 14–19
, pp.
404
409
.
10.
Lamy
,
X.
,
Colledani
,
F.
,
Geffard
,
F.
,
Measson
,
Y.
, and
Morel
,
G.
,
2009
, “
Achieving Efficient and Stable Comanipulation Through Adaptation to Changes in Human Arm Impedance
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Kobe, Japan
,
May 12–17
, pp.
265
271
.
11.
Colgate
,
J. E.
, and
Hogan
,
N.
,
1988
, “
Robust Control of Dynamically Interacting Systems
,”
Int. J. Control
,
48
(
1
), pp.
65
88
.
12.
Colgate
,
J. E.
,
1994
, “
Coupled Stability of Multiport Systems—Theory and Experiments
,”
J. Dyn. Syst. Meas. Control
,
116
(
3
), pp.
419
428
.
13.
Labrecque
,
P. D.
,
Laliberté
,
T.
,
Foucault
,
S.
,
Abdallah
,
M. E.
, and
Gosselin
,
C.
,
2017
, “
uMan : A Low Impedance Manipulator for Human–Robot Cooperation Based on Underactuated Redundancy
,”
IEEE/ASME Trans. Mechatron.
,
22
(
3
), pp.
1401
1411
.
14.
Badeau
,
N.
,
Gosselin
,
C.
,
Foucault
,
S.
,
Laliberté
,
T.
, and
Abdallah
,
M. E.
,
2018
, “
Intuitive Physical Human–Robot Interaction Using a Passive Parallel Mechanism
,”
IEEE Robot. Autom. Mag.
,
25
(
2
), pp.
28
38
.
15.
Barents
,
R.
,
Schenk
,
M.
,
van Dorsser
,
W. D.
,
Wisse
,
B. M.
, and
Herder
,
J. L.
,
2011
, “
Spring-to-Spring Balancing as Energy-Free Adjustment Method in Gravity Equilibrators
,”
ASME J. Mech. Des.
,
133
(
6
), p.
061010
.
16.
Van Dorsser
,
W. D.
,
Barents
,
R.
,
Wisse
,
B. M.
, and
Herder
,
J. L.
,
2007
, “
Gravity-Balanced Arm Support With Energy-Free Adjustment
,”
ASME J. Med. Dev.
,
1
(
2
), pp.
151
158
.
17.
Chu
,
Y. L.
, and
Kuo
,
C. H.
,
2017
, “
A Single-Degree-of-Freedom Self-Regulated Gravity Balancer for Adjustable Payload
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021006
.
18.
Kuo
,
C. H.
,
Nguyen
,
V. L.
,
Robertson
,
D.
,
Chou
,
L. T.
, and
Herder
,
J. L.
,
2021
, “
Statically Balancing a Reconfigurable Mechanism by Using One Passive Energy Element Only: A Case Study
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
040904
.
19.
Audet
,
J. M.
, and
Gosselin
,
C.
,
2021
, “
Rotational Low Impedance Physical Human–Robot Interaction Using Underactuated Redundancy
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
014503
.
20.
Herder
,
J. L.
,
2001
, “
Energy-Free Systems: Theory, Conception and Design of Statically Balanced Spring Mechanisms
,”
Dissertation
,
Delft University
,
Delft
.
You do not currently have access to this content.