Abstract

By virtue of distinguished wing shape morphing characteristics, the unrivaled agility and flight maneuverability of bats have inspired scientists and engineers to develop novel forms of robots that can fly like bats. The unique wing conformations, flight kinematics, and aerodynamics offer significant advantages over the conventional form of miniature air vehicle in terms of quiet, safe operations, improved efficiency, and enhanced maneuverability. Meanwhile, they also pose substantial challenges for robot design from multiple perspectives, including mechanical design, sensing, control, etc. The practical benefits and technical bottleneck have motivated the development of bat-inspired robots in recent years. The purpose of this paper is to summarize the designing principles and report current state-of-the-art of bat-inspired robot designs, emphasizing the respective distinguishing features of each paradigm, along with the room for further improvement. Rather than showcasing advancement in wing materials, we will focus on the mechanical design and control methodology. This paper will help researchers new in this realm to get familiar with the bat-inspired robots by adopting features from existing designs. It also concludes technical challenges associated with future development, involving biological research, aerodynamic modeling, mechanical design, and control technique.

References

1.
Norberg
,
U. M.
, and
Rayner
,
J. M.
,
1987
, “
Ecological Morphology and Flight in Bats (mammalia; Chiroptera): Wing Adaptations, Flight Performance, Foraging Strategy and Echolocation
,”
Philos. Trans. R. Soc. London. B, Biol. Sci.
,
316
(
1179
), pp.
335
427
.
2.
Mueller
,
T. J.
, ed.,
2001
,
Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications
, Vol.
195
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
, pp.
2
3
.
3.
Alexander
,
D.E.
,
2015
,
On the Wing: Insects, Pterosaurs, Birds, Bats and the Evolution of Animal Flight
,
Oxford University Press
,
New York
.
4.
Muijres
,
F. T.
,
Johansson
,
L. C.
,
Bowlin
,
M. S.
,
Winter
,
Y.
, and
Hedenström
,
A.
,
2012
, “
Comparing Aerodynamic Efficiency in Birds and Bats Suggests Better Flight Performance in Birds
,”
PLoS. One.
,
7
(
5
), pp.
1
9
.
5.
Hedenström
,
A.
,
Johansson
,
L. C.
, and
Spedding
,
G. R.
,
2009
, “
Bird Or Bat: Comparing Airframe Design and Flight Performance
,”
Bioinspir. Biomim.
,
4
(
1
), p.
015001
.
6.
Singh
,
S. K.
,
Zhang
,
L.-B.
, and
Zhao
,
J.-S.
,
2021
, “
Direct Measurements of the Wing Kinematics of a Bat in Straight Flight
,”
ASME J. Biomech. Eng.
,
143
(
4
), p.
041006
.
7.
Tian
,
X.
,
Iriarte-Diaz
,
J.
,
Middleton
,
K.
,
Galvao
,
R.
,
Israeli
,
E.
,
Roemer
,
A.
,
Sullivan
,
A.
,
Song
,
A.
,
Swartz
,
S.
, and
Breuer
,
K.
,
2006
, “
Direct Measurements of the Kinematics and Dynamics of Bat Flight
,”
Bioinspir. Biomim.
,
1
(
4
), pp.
S10
S18
.
8.
Vaughan
,
T. A.
,
1970
, “Chapter 5: Flight Patterns and Aerodynamics,”
Biology Bats
, Vol.
1
,
W.
Wimsatt
, ed.,
Academic Press
,
New York
, pp.
195
216
.
9.
Norberg
,
U. M.
,
1976
, “
Aerodynamics, Kinematics, and Energetics of Horizontal Flapping Flight in the Long-eared Bat Plecotus Auritus
,”
J. Exp. Biol.
,
65
(
1
), pp.
179
212
.
10.
Aldridge
,
H.
,
1986
, “
Kinematics and Aerodynamics of the Greater Horseshoe Bat, Rhinolophus Ferrumequinum, in Horizontal Flight At Various Flight Speeds
,”
J. Exp. Biol.
,
126
(
1
), pp.
479
497
.
11.
Vaughan
,
T. A.
,
1970
, “Chapter 4: The Muscular System,”
Biology Bats
, Vol.
1
,
W.
Wimsatt
, ed.,
Academic Press
,
New York
, pp.
139
194
.
12.
Schunk
,
C.
,
Swartz
,
S. M.
, and
Breuer
,
K. S.
,
2017
, “
The Influence of Aspect Ratio and Stroke Pattern on Force Generation of a Bat-inspired Membrane Wing
,”
Interface Focus.
,
7
(
1
), p.
20160083
.
13.
Norberg
,
U. M.
,
1990
,
Vertebrate Flight
,
Springer
,
Berlin
.
14.
Henningsson
,
P.
,
Spedding
,
G.
, and
Hedenström
,
A.
,
2008
, “
Vortex Wake and Flight Kinematics of a Swift in Cruising Flight in a Wind Tunnel
,”
J. Exp. Biol.
,
211
(
5
), pp.
717
730
.
15.
Muijres
,
F.
,
Johansson
,
L. C.
,
Barfield
,
R.
,
Wolf
,
M.
,
Spedding
,
G.
, and
Hedenström
,
A.
,
2008
, “
Leading-Edge Vortex Improves Lift in Slow-Flying Bats
,”
Science
,
319
(
5867
), pp.
1250
1253
.
16.
Riskin
,
D. K.
,
Willis
,
D. J.
,
Iriarte-Díaz
,
J.
,
Hedrick
,
T. L.
,
Kostandov
,
M.
,
Chen
,
J.
,
Laidlaw
,
D. H.
,
Breuer
,
K. S.
, and
Swartz
,
S. M.
,
2008
, “
Quantifying the Complexity of Bat Wing Kinematics
,”
J. Theor. Biol.
,
254
(
3
), pp.
604
615
.
17.
Von Busse
,
R.
,
Hedenström
,
A.
,
Winter
,
Y.
, and
Johansson
,
L. C.
,
2012
, “
Kinematics and Wing Shape Across Flight Speed in the Bat, Leptonycteris Yerbabuenae
,”
Biology open
,
1
(
12
), pp.
1226
1238
.
18.
Gardiner
,
J. D.
,
Dimitriadis
,
G.
,
Codd
,
J. R.
, and
Nudds
,
R. L.
,
2011
, “
A Potential Role for Bat Tail Membranes in Flight Control
,”
PLoS. One
,
6
(
3
), pp.
1
8
.
19.
Swartz
,
S.
,
Groves
,
M.
,
Kim
,
H.
, and
Walsh
,
W.
,
1996
, “
Mechanical Properties of Bat Wing Membrane Skin
,”
J. Zoology
,
239
(
2
), pp.
357
378
.
20.
Song
,
A.
,
Tian
,
X.
,
Israeli
,
E.
,
Galvao
,
R.
,
Bishop
,
K.
,
Swartz
,
S.
, and
Breuer
,
K.
,
2008
, “
Aeromechanics of Membrane Wings with Implications for Animal Flight
,”
AIAA. J.
,
46
(
8
), pp.
2096
2106
.
21.
Swartz
,
S. M.
,
Bennett
,
M. B.
, and
Carrier
,
D. R.
,
1992
, “
Wing Bone Stresses in Free Flying Bats and the Evolution of Skeletal Design for Flight
,”
Nature
,
359
(
6397
), pp.
726
729
.
22.
Swartz
,
S. M.
, and
Middleton
,
K. M.
,
2008
, “
Biomechanics of the Bat Limb Skeleton: Scaling, Material Properties and Mechanics
,”
Cells Tissues Organs
,
187
(
1
), pp.
59
84
.
23.
Norberg
,
U. M.
,
1972
, “
Bat Wing Structures Important for Aerodynamics and Rigidity (mammalia, Chiroptera)
,”
Z. Morphologie der Tiere
,
73
(
1
), pp.
45
61
.
24.
Vaughan
,
T. A.
,
1966
, “
Morphology and Flight Characteristics of Molossid Bats
,”
J. Mammal.
,
47
(
2
), pp.
249
260
.
25.
Guan
,
Z.-w.
, and
Yu
,
Y.-l.
,
2014
, “
Aerodynamic Mechanism of Forces Generated by Twisting Model-wing in Bat Flapping Flight
,”
Appl. Math. Mech.
,
35
(
12
), pp.
1607
1618
.
26.
Guan
,
Z.
, and
Yu
,
Y.
,
2015
, “
Aerodynamics and Mechanisms of Elementary Morphing Models for Flapping Wing in Forward Flight of Bat
,”
Appl. Math. Mech.
,
36
(
5
), pp.
669
680
.
27.
Koekkoek
,
G.
,
Muijres
,
F. T.
,
Johansson
,
L. C.
,
Stuiver
,
M.
,
van Oudheusden
,
B. W.
, and
Hedenström
,
A.
,
2012
, “
Stroke Plane Angle Controls Leading Edge Vortex in a Bat-Inspired Flapper
,”
Compt. Rendus Mecanique
,
340
(
1–2
), pp.
95
106
.
28.
Wolf
,
M.
,
Johansson
,
L. C.
,
von Busse
,
R.
,
Winter
,
Y.
, and
Hedenström
,
A.
,
2010
, “
Kinematics of Flight and the Relationship to the Vortex Wake of a Pallas’ Long Tongued Bat (glossophaga Soricina)
,”
J. Exp. Biol.
,
213
(
12
), pp.
2142
2153
.
29.
Bergou
,
A. J.
,
Swartz
,
S. M.
,
Vejdani
,
H.
,
Riskin
,
D. K.
,
Reimnitz
,
L.
,
Taubin
,
G.
, and
Breuer
,
K. S.
,
2015
, “
Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia
,”
PLoS. Biol.
,
13
(
11
), pp.
1
16
.
30.
Ramezani
,
A.
,
Chung
,
S.-J.
, and
Hutchinson
,
S.
,
2017
, “
A Biomimetic Robotic Platform to Study Flight Specializations of Bats
,”
Sci. Rob.
,
2
(
3
), p.
2505
.
31.
Sibilski
,
K.
,
Loroch
,
L.
,
Buler
,
W.
, and
Zyluk
,
A.
,
2004
, “
Modeling and Simulation of the Nonlinear Dynamic Behavior of a Flapping Wings Micro-Aerial-Vehicle
,”
42nd AIAA Aerospace Sciences Meeting and Exhibit
, p.
AIAA
.
32.
Grauer
,
J. A.
, and
Hubbard
,
J. E.
,
2009
, “
Multibody Model of An Ornithopter
,”
AIAA J. Guidance, Control, Dynam.
,
32
(
5
), pp.
1675
1679
.
33.
Orlowski
,
C. T.
, and
Girard
,
A. R.
,
2011
, “
Modeling and Simulation of Nonlinear Dynamics of Flapping Wing Micro Air Vehicles
,”
AIAA. J.
,
49
(
5
), pp.
969
981
.
34.
Chand
,
A.
,
Kawanishi
,
M.
, and
Narikiyo
,
T.
,
2014
, “
Design Analysis, Modelling and Experimental Validation of a Bird-Like Flapping-Wing Flying Robot
,”
International Micro Air Vehicle Conference and Competition
,
Delft, The Netherlands
, pp.
42
49
.
35.
Cheng
,
B.
, and
Deng
,
X.
,
2011
, “
Translational and Rotational Damping of Flapping Flight and Its Dynamics and Stability At Hovering
,”
IEEE Trans. Rob.
,
27
(
5
), pp.
849
864
.
36.
Chen
,
Y.
,
Wang
,
H.
,
Helbling
,
E. F.
,
Jafferis
,
N. T.
,
Zufferey
,
R.
,
Ong
,
A.
,
Ma
,
K.
,
Gravish
,
N.
,
Chirarattananon
,
P.
,
Kovac
,
M.
, and
Wood
,
R. J.
,
2017
, “
A Biologically Inspired, Flapping-wing, Hybrid Aerial-aquatic Microrobot
,”
Sci. Rob.
,
2
(
11
), p.
eaao5619
.
37.
Madangopal
,
R.
,
Khan
,
Z. A.
, and
Agrawal
,
S. K.
,
2004
, “
Biologically Inspired Design of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms and Quasi-Seady Aerodynamics
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
809
816
.
38.
He
,
W.
,
Yan
,
Z.
,
Sun
,
C.
, and
Chen
,
Y.
,
2017
, “
Adaptive Neural Network Control of a Flapping Wing Micro Aerial Vehicle With Disturbance Observer
,”
IEEE Trans. Cyber.
,
47
(
10
), pp.
3452
3465
.
39.
Paranjape
,
A. A.
,
Chung
,
S. -J.
,
Hilton
,
H. H.
, and
Chakravarthy
,
A.
,
2012
, “
Dynamics and Performance of Tailless Micro Aerial Vehicle With Flexible Articulated Wings
,”
AIAA. J.
,
50
(
5
), pp.
1177
1188
.
40.
Ramezani
,
A.
,
Shi
,
X.
,
Chung
,
S.-J.
, and
Hutchinson
,
S.
,
2015
, “
Lagrangian Modeling and Flight Control of Articulated-Winged Bat Robot
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, IEEE, pp.
2867
2874
.
41.
Paranjape
,
A. A.
,
Chung
,
S.-J.
, and
Selig
,
M. S.
,
2011
, “
Flight Mechanics of a Tailless Articulated Wing Aircraft
,”
Bioinspir. Biomim.
,
6
(
2
), p.
026005
.
42.
Hubel
,
T. Y.
,
Hristov
,
N. I.
,
Swartz
,
S. M.
, and
Breuer
,
K. S.
,
2010
, “Time-resolved Wake Structure and Kinematics of Bat Flight,”
Animal Locomotion
,
G. K.
Taylor
,
M. S.
Triantafyllou
, and
C.
Tropea
, eds.,
Springer
,
Heidelberg
, pp.
371
381
.
43.
Ellington
,
C. P.
,
1984
, “
The Aerodynamics of Hovering Insect Flight. I. the Quasi-steady Analysis
,”
Philos. Trans. R. Soc. London. B, Biolog. Sci.
,
305
(
1122
), pp.
1
15
.
44.
Hedenström
,
A.
,
Johansson
,
L.
,
Wolf
,
M.
,
Von Busse
,
R.
,
Winter
,
Y.
, and
Spedding
,
G. R.
,
2007
, “
Bat Flight Generates Complex Aerodynamic Tracks
,”
Science
,
316
(
5826
), pp.
894
897
.
45.
Goman
,
M.
, and
Khrabrov
,
A.
,
1994
, “
State-space Representation of Aerodynamic Characteristics of An Aircraft At High Angles of Attack
,”
J. Aircraft
,
31
(
5
), pp.
1109
1115
.
46.
DeLaurier
,
J. D.
,
1993
, “An Aerodynamic Model for Flapping-Wing Flight,”
Aeronaut. J.
,
97
(
964
), pp.
125
130
.
47.
Vejdani
,
H. R.
,
2019
, “
Dynamics and Stability of Bat-Scale Flapping Wing Hovering Robot
,”
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, BC, Canada
,
Aug. 22–26
, IEEE, pp.
1106
1111
.
48.
Vejdani
,
H. R.
,
Boerma
,
D. B.
,
Swartz
,
S. M.
, and
Breuer
,
K. S.
,
2019
, “
The Dynamics of Hovering Flight in Hummingbirds, Insects and Bats With Implications for Aerial Robotics
,”
Bioinspir. Biomim.
,
14
(
1
), p.
016003
.
49.
Sun
,
M.
,
Wang
,
J.
, and
Xiong
,
Y.
,
2007
, “
Dynamic Flight Stability of Hovering Insects
,”
Acta. Mech. Sin.
,
23
(
3
), pp.
231
246
.
50.
Taylor
,
G.
, and
Thomas
,
A.
,
2002
, “
Animal Flight Dynamics II. Longitudinal Stability in Flapping Flight
,”
J. Theor. Biol.
,
214
(
3
), pp.
351
370
.
51.
Routh
,
E. J.
,
1877
,
A Treatise on the Stability of A Given State of Motion: Particularly Steady Motion
,
Macmillan and Company
,
London
.
52.
Dietl
,
J. M.
, and
Garcia
,
E.
,
2008
, “
Stability in Ornithopter Longitudinal Flight Dynamics
,”
J. Guidance, Control, Dyn.
,
31
(
4
), pp.
1157
1163
.
53.
Khalil
,
H. K.
,
1996
,
Nonlinear Systems
, 2nd ed.,
Prentice-Hall
,
Upper Saddle River, NJ
.
54.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
1983
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
,
Springer
,
New York
.
55.
Dadashi
,
S.
,
Gregory
,
J.
,
Lei
,
Y.
,
Kurdila
,
A.
,
Bayandor
,
J.
, and
Mueller
,
R.
,
2014
, “
Adaptive Control of a Flapping Wing Robot Inspired by Bat Flight
,”
AIAA Guidance, Navigation, and Control Conference
.
56.
Murphy
,
I. P.
,
Dadashi
,
S.
,
Gregory
,
J.
,
Lei
,
Y.
,
Bayandor
,
J.
, and
Kurdila
,
A.
,
2013
, “
Modeling and Adaptive Control for Tracking Wing Trajectories
,”
ASME International Mechanical Engineering Congress and Exposition, Vol. Volume 4A: Dynamics, Vibration and Control of ASME International Mechanical Engineering Congress and Exposition
,
San Diego, CA
,
Nov. 15–21
.
57.
Dorothy
,
M.
,
Paranjape
,
A. A.
,
Kuang
,
P. D.
, and
Chung
,
S.-J.
,
2012
, “Towards Bio-Inspired Robotic Aircraft: Control Experiments on Flapping and Gliding Flight,”
Advances in Intelligent and Autonomous Aerospace Systems. Progress in Astronautics and Aeronautics
, Vol.
241
,
J.
Valasek
, ed.,
American Institute of Aeronautics and Astronautics (AIAA)
,
Reston, VA
, pp.
1
31
.
58.
Chung
,
S.-J.
, and
Dorothy
,
M.
,
2010
, “
Neurobiologically Inspired Control of Engineered Flapping Flight
,”
J. Guid., Control, Dyn.
,
33
(
2
), pp.
440
453
.
59.
Colorado
,
J.
,
Barrientos
,
A.
,
Rossi
,
C.
, and
Parra
,
C.
,
2012
, “
Inertial Attitude Control of a Bat-like Morphing-wing Air Vehicle
,”
Bioinspir. Biomim.
,
8
(
1
), p.
016001
.
60.
Ramezani
,
A.
,
Ahmed
,
S. U.
,
Hoff
,
J.
,
Chung
,
S.-J.
, and
Hutchinson
,
S.
,
2017
, “Describing Robotic Bat Flight With Stable Periodic Orbits,”
Biomimetic and Biohybrid Systems
,
M.
Mangan
,
M.
Cutkosky
,
A.
Mura
,
P. F.
Verschure
,
T.
Prescott
, and
N.
Lepora
, eds.,
Springer International Publishing
,
Cham
, pp.
394
405
.
61.
Taha
,
H. E.
,
Hajj
,
M. R.
, and
Nayfeh
,
A. H.
,
2014
, “
Longitudinal Flight Dynamics of Hovering Mavs/Insects
,”
J. Guid., Control, Dyn.
,
37
(
3
), pp.
970
978
.
62.
Bejgerowski
,
W.
,
Ananthanarayanan
,
A.
,
Mueller
,
D.
, and
Gupta
,
S. K.
,
2009
, “
Integrated Product and Process Design for a Flapping Wing Drive-Mechanism
,”
ASME. J. Mech. Des.
,
131
(
6
), p.
061006
.
63.
Hoff
,
J.
,
Ramezani
,
A.
,
Chung
,
S.-J.
, and
Hutchinson
,
S.
,
2018
, “
Optimizing the Structure and Movement of a Robotic Bat With Biological Kinematic Synergies
,”
Int. J. Rob. Res.
,
37
(
10
), pp.
1233
1252
.
64.
Ghanbari
,
A.
,
Mottaghi
,
E.
, and
Qaredaghi
,
E.
,
2013
, “
A New Model of Bio-Inspired Bat Robot
,”
2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM)
, pp.
403
406
.
65.
Wu
,
Z.
,
Müller
,
R.
,
Bayandor
,
J.
, and
Qian
,
J.
,
2016
, “
A Foldable Flapping Wing Design Inspired by the Elbow-Wrist Anatomy of Bats
,”
30th Congress of the International Council of the Aeronautical Sciences (ICAS 2016)
, pp.
25
30
.
66.
Colorado
,
J.
,
Barrientos
,
A.
,
Rossi
,
C.
, and
Breuer
,
K. S.
,
2012
, “
Biomechanics of Smart Wings in a Bat Robot: Morphing Wings Using SMA Actuators
,”
Bioinspir. Biomim.
,
7
(
3
), p.
036006
.
67.
Ma
,
N.
,
Zhou
,
X.
,
He
,
G.
, and
Yu
,
J.
,
2016
, “
Design and Analysis of a Bat-like Active Morphing Wing Mechanism
,”
Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5A: 40th Mechanisms and Robotics Conference
,
Charlotte, NC
,
Aug. 21–24
.
68.
Kong
,
D.
,
Zhao
,
J.-S.
, and
Tollori
,
Y. S.
,
2018
, “Mechanism Design and Kinematics Analysis of a Bat Robot,”
Multibody Mechatronic Systems, J
,
C.M.
Carvalho
,
D.
Martins
,
R.
Simoni
, and
H.
Simas
, eds.,
Springer International Publishing
,
Cham
, pp.
25
38
.
69.
Lessieur
,
A.
,
Sihite
,
E.
,
Dangol
,
P.
,
Singhal
,
A.
, and
Ramezani
,
A.
,
2021
, “Mechanical Design and Fabrication of a Kinetic Sculpture with Application to Bioinspired Drone Design,”
Unmanned Systems Technology XXIII
, Vol.
11758
,
H. G.
Nguyen
,
P. L.
Muench
, and
B. K.
Skibba
, eds.,
International Society for Optics and Photonics
,
Bellingham, WA
, p.
1175806
.
70.
Ramezani
,
A.
,
Shi
,
X.
,
Chung
,
S.-J.
, and
Hutchinson
,
S.
,
2016
, “
Bat Bot (b2), a Biologically Inspired Flying Machine
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, IEEE, pp.
3219
3226
.
71.
Sihite
,
E.
,
Lessieur
,
A.
,
Dangol
,
P.
,
Singhal
,
A.
, and
Ramezani
,
A.
,
2021
, “Orientation Stabilization in a Bioinspired Bat-robot Using Integrated Mechanical Intelligence and Control,”
Unmanned Systems Technology XXIII
, Vol.
11758
,
H. G.
Nguyen
,
P. L.
Muench
, and
B. K.
Skibba
, eds.,
International Society for Optics and Photonics
,
Bellingham, WA
, p.
1175805
.
72.
Sihite
,
E.
,
Kelly
,
P.
, and
Ramezani
,
A.
,
2020
, “
Computational Structure Design of a Bio-Inspired Armwing Mechanism
,”
IEEE Rob. Auto. Lett.
,
5
(
4
), pp.
5929
5936
.
73.
Falanga
,
D.
,
Kleber
,
K.
,
Mintchev
,
S.
,
Floreano
,
D.
, and
Scaramuzza
,
D.
,
2019
, “
The Foldable Drone: A Morphing Quadrotor that Can Squeeze and Fly
,”
IEEE Rob. Auto. Lett.
,
4
(
2
), pp.
209
216
.
74.
Yang
,
D.
,
Mishra
,
S.
,
Aukes
,
D. M.
, and
Zhang
,
W.
,
2019
, “
Design, Planning, and Control of An Origami-Inspired Foldable Quadrotor
,” 2019 American Control Conference (ACC), pp.
2551
2556
.
75.
Bucki
,
N.
, and
Mueller
,
M. W.
,
2019
, “
Design and Control of a Passively Morphing Quadcopter
,” 2019 International Conference on Robotics and Automation (ICRA), pp.
9116
9122
.
76.
Bahlman
,
J. W.
,
Swartz
,
S. M.
, and
Breuer
,
K. S.
,
2013
, “
Design and Characterization of a Multi-Articulated Robotic Bat Wing
,”
Bioinspir. Biomim.
,
8
(
1
), p.
016009
.
77.
Yin
,
D.
, and
Zhang
,
Z.
,
2016
, “
Design, Fabrication and Kinematics of a Bio-Inspired Robotic Bat Wing
,”
Sci. China Technol. Sci.
,
59
(
12
), pp.
1921
1930
.
78.
Stowers
,
A. K.
, and
Lentink
,
D.
,
2015
, “
Folding In and Out: Passive Morphing in Flapping Wings
,”
Bioinspir. Biomim.
,
10
(
2
), p.
025001
.
79.
Furst
,
S. J.
,
Bunget
,
G.
, and
Seelecke
,
S.
,
2012
, “
Design and Fabrication of a Bat-Inspired Flapping-Flight Platform Using Shape Memory Alloy Muscles and Joints
,”
Smart Mater. Struct.
,
22
(
1
), p.
014011
.
80.
Gerdes
,
J. W.
,
Gupta
,
S. K.
, and
Wilkerson
,
S. A.
,
2012
, “
A Review of Bird-Inspired Flapping Wing Miniature Air Vehicle Designs
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021003
.
81.
Farrell Helbling
,
E.
, and
Wood
,
R. J.
,
2018
, “
A Review of Propulsion, Power, and Control Architectures for Insect-Scale Flapping-Wing Vehicles
,”
Appl. Mech. Rev.
,
70
(
1
), p.
010801
.
82.
Taha
,
H. E.
,
Hajj
,
M. R.
, and
Nayfeh
,
A. H.
,
2012
, “
Flight Dynamics and Control of Flapping-Wing Mavs: A Review
,”
Nonlinear Dyn.
,
70
(
2
), pp.
907
939
.
You do not currently have access to this content.