Abstract

Due to the inherent deformability of continuum robots (CRs), closed-loop control strategies of CRs come with some challenges, including sensor integration within a limited dimension and uncertainties with the CR system. In this paper, to obtain the spatial shape information and tip position of a cable-driven CR, a draw tower grating (DTG) sensor is integrated. A shape sensing algorithm is proposed to reconstruct the shape of the CR based on the relation between the DTG sensor and the CR centerline. Then, with the feedback information of the DTG sensor, a damped least-squares (DLS)-based closed-loop controller is implemented to improve the trajectory tracking performance of the CR. To verify the effectiveness of the proposed scheme, comparative experiments are performed.

References

1.
Robinson
,
G.
, and
Davies
,
J.
,
1999
, “
Continuum Robots—A State of the Art
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Detroit, MI
,
May 10–15
, pp.
2849
2854
. http://dx.oi.org/10.1109/ROBOT.1999.774029
2.
Thomas
,
T. L.
,
Venkiteswaran
,
V. K.
,
Ananthasuresh
,
G. K.
, and
Misra
,
S.
,
2021
, “
Surgical Applications of Compliant Mechanisms: A Review
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
020801
.
3.
Wang
,
C.
,
Frazelle
,
C. G.
,
Wagner
,
J. R.
, and
Walker
,
I. D.
,
2021
, “
Dynamic Control of Multisection Three-Dimensional Continuum Manipulators Based on Virtual Discrete-Jointed Robot Models
,”
IEEE/ASME Trans. Mechatron.
,
26
(
2
), pp.
777
788
.
4.
Li
,
S.
, and
Hao
,
G.
,
2021
, “
Current Trends and Prospects in Compliant Continuum Robots: A Survey
,”
Actuators
,
10
(
7
), pp.
1
26
.
5.
Li
,
M.
,
Kang
,
R.
,
Branson
,
D. T.
, and
Dai
,
J. S.
,
2018
, “
Model-Free Control for Continuum Robots Based on an Adaptive Kalman Filter
,”
IEEE/ASME Trans. Mechatron.
,
23
(
1
), pp.
286
297
.
6.
Zhou
,
B.
,
Yang
,
L.
,
Wang
,
C.
,
Chen
,
Y.
, and
Chen
,
K.
,
2020
, “
Inverse Jacobian Adaptive Tracking Control of Robot Manipulators With Kinematic, Dynamic, and Actuator Uncertainties
,”
Complexity
,
2020
,
Art. no. 5070354
.
7.
Hannan
,
M. W.
, and
Walker
,
I. D.
,
2003
, “
Kinematics and the Implementation of an Elephant’s Trunk Manipulator and Other Continuum Style Robots
,”
J. Robot. Syst.
,
20
(
2
), pp.
45
63
.
8.
Webster
,
R. J.
, and
Jone
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Robot. Res.
,
29
(
13
), pp.
1661
1683
.
9.
Buss
,
S. R.
, and
Kim
,
J.-S.
,
2004
, “
Selectively Damped Least Squares for Inverse Kinematics
,”
J. Graph. Tools
,
10
(
3
), pp.
37
49
.
10.
Liu
,
T.
,
Jackson
,
R.
,
Franson
,
D.
,
Poirot
,
N. L.
,
Criss
,
R. K.
,
Seiberlich
,
N.
,
Griswold
,
M. A.
, and
Çavuşoǧlu
,
M. C.
,
2017
, “
Iterative Jacobian-Based Inverse Kinematics and Open-Loop Control of an MRI-Guided Magnetically Actuated Steerable Catheter System
,”
IEEE/ASME Trans. Mechatron.
,
22
(
4
), pp.
1765
1776
.
11.
Li
,
M.
,
Kang
,
R.
,
Geng
,
S.
, and
Guglielmino
,
E.
,
2018
, “
Design and Control of a Tendon-Driven Continuum Robot
,”
Trans. Inst. Meas. Control
,
40
(
11
), pp.
3263
3272
.
12.
Colomé
,
A.
, and
Torras
,
C.
,
2015
, “
Closed-Loop Inverse Kinematics for Redundant Robots: Comparative Assessment and Two Enhancements
,”
IEEE/ASME Trans. Mechatron.
,
20
(
2
), pp.
944
955
.
13.
Shapiro
,
Y.
,
Kosa
,
G.
, and
Wolf
,
A.
,
2014
, “
Shape Tracking of Planar Hyper-Flexible Beams Via Embedded PVDF Deflection Sensors
,”
IEEE/ASME Trans. Mechatron.
,
19
(
4
), pp.
1260
1267
.
14.
Franz
,
A. M.
,
Haidegger
,
T.
,
Birkfellner
,
W.
,
Cleary
,
K.
,
Peters
,
T. M.
, and
Maier-Hein
,
L.
,
2014
, “
Electromagnetic Tracking in Medicine—A Review of Technology, Validation, and Applications
,”
IEEE Trans. Med. Imag.
,
33
(
8
), pp.
1702
1725
.
15.
Song
,
S.
,
Li
,
Z.
,
Yu
,
H.
, and
Ren
,
H.
,
2015
, “
Electromagnetic Positioning for Tip Tracking and Shape Sensing of Flexible Robots
,”
IEEE Sensors J.
,
15
(
8
), pp.
4565
4575
.
16.
Zhang
,
C.
,
Lu
,
Y.
,
Qiu
,
X.
,
Song
,
S.
,
Liu
,
L.
, and
Meng
,
M. Q.-H.
,
2017
, “
Preliminary Study on Magnetic Tracking Based Navigation for Wire-Driven Flexible Robot
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vancouver, Canada
,
Sept. 24–28
, pp.
2517
2523
.
17.
Liu
,
H.
,
Farvardin
,
A.
,
Grupp
,
R.
,
Murphy
,
R. J.
,
Taylor
,
R. H.
,
Iordachita
,
I.
, and
Armand
,
M.
,
2015
, “
Shape Tracking of a Dexterous Continuum Manipulator Utilizing Two Large Deflection Shape Sensors
,”
IEEE Sensors J.
,
15
(
10
), pp.
5494
5503
.
18.
Wang
,
H.
,
Zhang
,
R.
,
Chen
,
W.
,
Liang
,
X.
, and
Pfeifer
,
R.
,
2016
, “
Shape Detection Algorithm for Soft Manipulator Based on Fiber Bragg Gratings
,”
IEEE/ASME Trans. Mechatron.
,
21
(
6
), pp.
2977
2982
.
19.
Al-Ahmad
,
O.
,
Ourak
,
M.
,
Van Roosbroeck
,
J.
,
Vlekken
,
J.
, and
Poorten
,
E. V.
,
2020
, “
Improved FBG-Based Shape Sensing Methods for Vascular Catheterization Treatment
,”
IEEE Robot. Autom. Lett.
,
5
(
3
), pp.
4687
4694
.
20.
Van Hoe
,
B.
,
Van Roosbroeck
,
J.
,
Voigtlander
,
C.
,
Vlekken
,
J.
, and
Lindner
,
E.
,
2016
, “
Distributed Strain and Curvature Measurements Based on Tailored Draw Tower Gratings
,”
Proceedigns of the IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP)
,
Long Beach, CA
,
Oct. 31–Nov. 3
, pp.
285
286
.
21.
Shi
,
C.
,
Luo
,
X.
,
Qi
,
P.
,
Li
,
T.
,
Song
,
S.
,
Najdovski
,
Z.
,
Fukuda
,
T.
, and
Ren
,
H.
,
2017
, “
Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey
,”
IEEE Trans. Biomed. Eng.
,
64
(
8
), pp.
1665
1678
.
22.
Khan
,
F.
,
Denasi
,
A.
,
Barrera
,
D.
,
Madrigal
,
J.
,
Sales
,
S.
, and
Misra
,
S.
,
2019
, “
Multi-core Optical Fibers With Bragg Gratings as Shape Sensor for Flexible Medical Instruments
,”
IEEE Sensors J.
,
19
(
14
), pp.
5878
5884
.
23.
Roesthuis
,
R. J.
,
Kemp
,
M.
, and
Misra
,
S.
,
2014
, “
Three-Dimensional Needle Shape Reconstruction Using an Array of Fiber Bragg Grating Sensors
,”
IEEE/ASME Trans. Mechatron.
,
19
(
4
), pp.
1115
1126
.
24.
Carrol
,
D.
,
Kose
,
E.
, and
Sterling
,
I.
,
2013
, “
Improving Frenet’s Frame Using Bishop’s Frame
,”
J. Math. Res.
,
5
(
4
), pp.
97
106
.
You do not currently have access to this content.