Abstract

This article presents an experimental study with theory to identify quantitatively the zero-potential-energy (ZP) motion in Cartesian impedance control of redundant manipulators, based on a new analytical methodology. This ZP mode of motion, analogous to the rigid-body mode in classic mechanical systems, is a result of the redundancy of the robot. When subject to an external perturbation under impedance control, a redundant robot will assume a new equilibrium configuration determined by the ZP motion, governed by the least-energy principle. Consequently, this creates a steady-state deviation from its initial configuration after a perturbation and reaches a new equilibrium. We determine such ZP motion(s) by utilizing a closed-form solution based on vibration theory. Experiments were conducted on a 7-degrees-of-freedom (DoF) redundant Panda robot to determine the new equilibrium after a perturbation. The experimental results are compared with the theoretical prediction of the ZP motions to validate the theoretical results of the zero-potential-energy motions due to stiffness in impedance control. Furthermore, we demonstrated that the ZP motion due to redundancy can be eliminated by removing the redundancy through experimental validation by employing the null-space control, as expected.

References

1.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation: Part I—Theory, Part II—Implementation, Part III—Applications.
,”
ASME J. Dyn. Syst., Meas. Control
,
107
(
1
), pp.
1
7
.
2.
Khatib
,
O.
,
1987
, “
A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation
,”
IEEE J. Rob. Autom.
,
3
(
1
), pp.
43
53
.
3.
Lu
,
Z.
, and
Goldenberg
,
A. A.
,
1995
, “
Robust Impedance Control and Force Regulation: Theory and Experiments
,”
Int. J. Rob. Res.
,
14
(
3
), pp.
225
254
.
4.
Cutkosky
,
M. R.
, and
Kao
,
I.
,
1989
, “
Computing and Controlling Compliance of a Robotic Hand
,”
IEEE. Trans. Rob. Autom.
,
5
(
2
), pp.
151
165
.
5.
Villani
,
L.
, and
De Schutter
,
J.
,
2008
, “Force Control,”
Springer Handbook of Robotics
,
Sicilian
,
B.
,
Khatib
,
O.
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
161
185
.
6.
Ott
,
C.
,
2008
,
Cartesian Impedance Control of Redundant and Flexible-Joint Robots
, 1st ed.,
Springer Publishing Company Inc
,
Berlin/Heidelberg
.
7.
Saldarriaga
,
C.
,
Chakraborty
,
N.
, and
Kao
,
I.
,
2022
, “
Damping Selection for Cartesian Impedance Control With Dynamic Response Modulation
,”
IEEE Trans. Rob.
,
38
(
3
), pp.
1915
1924
.
8.
Orekhov
,
A. L.
, and
Simaan
,
N.
,
2019
, “
Directional Stiffness Modulation of Parallel Robots With Kinematic Redundancy and Variable Stiffness Joints
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051003
.
9.
Rond
,
J. J.
,
Cardani
,
M. C.
,
Campbell
,
M. I.
, and
Hurst
,
J. W.
,
2020
, “
Mitigating Peak Impact Forces by Customizing the Passive Foot Dynamics of Legged Robots
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051010
.
10.
Siciliano
,
B.
,
Sciavicco
,
L.
,
Villani
,
L.
, and
Oriolo
,
G.
,
2010
,
Robotics: Modelling, Planning and Control
(
Adv Textbooks in Cont and Signal Proc
),
Springer
,
London
.
11.
Dietrich
,
A.
,
Ott
,
C.
, and
Albu-Schaffer
,
A.
,
2015
, “
An Overview of Null Space Projections for Redundant, Torque-Controlled Robots
,”
Int. J. Rob. Res.
,
34
(
11
), pp.
1385
1400
.
12.
Nakamura
,
Y.
,
1991
,
Advanced Robotics: Redundancy and Optimization
(
Addison-Wesley Series in Electrical and Computer Engineering: Control Engineering
),
Addison-Wesley Publishing Company
.
13.
Cavacanti Santos
,
J.
, and
Martins da Silva
,
M.
,
2017
, “
Redundancy Resolution of Kinematically Redundant Parallel Manipulators via Differential Dynamic Programing
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041016
.
14.
Meirovitch
,
L.
,
2001
,
Fundamentals of Vibrations
,
McGraw-Hill
,
New York
.
15.
Kao
,
I.
, and
Saldarriaga
,
C.
,
2021
, “
Analytical Methodology for the Analysis of Vibration for Unconstrained Discrete Systems and Applications to Impedance Control of Redundant Robots
,”
Robomech J.
,
8
(
12
), pp.
1
21
.
16.
Hanc
,
J.
, and
Taylor
,
E. F.
,
2004
, “
From Conservation of Energy to the Principle of Least Action: A Story Line
,”
Am. J. Phys.
,
72
(
4
), pp.
514
521
.
17.
Saldarriaga
,
C.
, and
Kao
,
I.
,
2021
, “
Zero-Potential-Energy Motions Due to Stiffness in Impedance Control of Robotic Tasks: An Innovative Theory and Experimental Study
,”
2021 IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an, China
,
May 30
, pp.
2548
2554
.
18.
Chen
,
S.-F.
, and
Kao
,
I.
,
2000
, “
Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers
,”
Int. J. Rob. Res.
,
19
(
9
), pp.
835
847
.
19.
Saldarriaga
,
C.
,
Chakraborty
,
N.
,
Kao
,
I.
,
Asfour
,
T.
,
Yoshida
,
E.
,
Park
,
J.
,
Christensen
,
H.
, and
Khatib
,
O.
,
2022
, “Joint Space Stiffness and Damping for Cartesian and Null Space Impedance Control of Redundant Robotic Manipulators,”
Robotics Research
,
Springer International Publishing
,
Cham
, pp.
410
–426
.
20.
Siciliano
,
B.
, and
Slotine
,
J. E.
,
1991
, “
A General Framework for Managing Multiple Tasks in Highly Redundant Robotic Systems
,”
Fifth International Conference on Advanced Robotics ’Robots in Unstructured Environments
,
Pisa, Italy
,
June 19
, Vol. 2, pp.
1211
1216
.
21.
Khatib
,
O.
,
1995
, “
Inertial Properties in Robotic Manipulation: An Object-Level Framework
,”
Int. J. Robot. Res.
,
14
(
1
), pp.
19
36
.
22.
Rao
,
S.
,
2010
,
Mechanical Vibrations
, 5th ed.,
Pearson
,
London
.
23.
Bona
,
B.
, and
Indri
,
M.
,
2005
, “
Friction Compensation in Robotics: An Overview
,”
Proceedings of the 44th IEEE Conference on Decision and Control
,
Seville, Spain
,
Dec. 15
, pp.
4360
4367
.
24.
Townsend
,
W.
, and
Salisbury
,
J.
,
1987
, “
The Effect of Coulomb Friction and Stiction on Force Control
,”
1987 IEEE International Conference on Robotics and Automation
,
Raleigh, NC
,
Mar. 31
, Vol. 4, pp.
883
889
.
25.
Pagani
,
R.
,
Legnani
,
G.
,
Incerti
,
G.
, and
Gheza
,
M.
,
2020
, “
Evaluation and Modeling of the Friction in Robotic Joints Considering Thermal Effects
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021108
.
You do not currently have access to this content.