Abstract

Zipper-coupled tubes are a unique structure consisting of two tubes with zig-zag walls that, when coupled in a zipper fashion, resist compression in the normal direction. A wider application of zipper-coupled tubes, however, is precluded by their angular form. By focusing on a subset of zipper-coupled tubes with parallel and coplanar creases constructed by repeating asymmetric degree-four vertex cells, we design a smooth sheet attachment that lies flat when the asymmetric zipper-coupled tubes are fully deployed, increasing the utility of the otherwise jagged tubes. Furthermore, we provide an explicit mathematical model of the motion of the resulting mechanism, thereby demonstrating its rigid-foldability.

References

1.
Wu
,
S.
,
Ze
,
Q.
,
Dai
,
J.
,
Udipi
,
N.
,
Paulino
,
G. H.
, and
Zhao
,
R.
,
2021
, “
Stretchable Origami Robotic Arm With Omnidirectional Bending and Twisting
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
36
), p.
e2110023118
.
2.
Lee
,
D. Y.
,
Kim
,
J. K.
,
Sohn
,
C. Y.
,
Heo
,
J. M.
, and
Cho
,
K. J.
,
2021
, “
High-Load Capacity Origami Transformable Wheel
,”
Sci. Rob.
,
6
(
53
), p.
0201
.
3.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
9
), pp.
3276
3281
.
4.
Melancon
,
D.
,
Gorissen
,
B.
,
García-Mora
,
C. J.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2021
, “
Multistable Inflatable Origami Structures at the Metre Scale
,”
Nature
,
592
, pp.
545
550
.
5.
Li
,
S.
,
Fang
,
H.
, and
Wang
,
K. W.
,
2016
, “
Recoverable and Programmable Collapse From Folding Pressurized Origami Cellular Solids
,”
Phys. Rev. Lett.
,
117
(
11
), p.
114301
.
6.
Fang
,
H.
,
Li
,
S.
, and
Wang
,
K. W.
,
2016
, “
Self-Locking Degree-4 Vertex Origami Structures
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
472
(
2195
), p.
20160682
.
7.
Filipov
,
E. T.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2015
, “
Origami Tubes Assembled Into Stiff, Yet Reconfigurable Structures and Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
40
), p.
1509465112
.
8.
Filipov
,
E. T.
,
Paulino
,
G. H.
, and
Tachi
,
T.
,
2019
, “
Deployable Sandwich Surfaces With High Out-of-Plane Stiffness
,”
J. Struct. Eng.
,
145
(
2
), p.
04018244
.
9.
Tachi
,
T.
,
Filipov
,
E. T.
, and
Paulino
,
G. H.
,
2015
, “
Deployable Folded-Core Sandwich Panels Guided by a Generating Surface
,”
Proceedings of IASS Annual Symposia, IASS 2015 Amsterdam Symposium: Future Visions – Geometry
,
Amsterdam, The Netherlands
,
Aug. 17–20
, pp.
1
7
.
10.
Miura
,
K.
,
2009
, “
The Science of Miura-ori: A Review
,”
Origami 4
,
R. J.
Lang
, ed.,
A K Peters/CRC Press
, Chap. 4, pp.
87
99
.
11.
Miura
,
K.
,
1985
, “
Method of Packaging and Deployment of Large Membranes in Space
,”
Inst. Space Astron. Sci. Rep.
,
618
, pp.
1
9
.
12.
Miura
,
K.
, and
Natori
,
M.
,
1985
, “
2-D Array Experiment on Board a Space Flyer Unit
,”
Space Sol. Power Rev.
,
5
(
4
), pp.
345
356
.
13.
Waitukaitis
,
S.
, and
van Hecke
,
M.
,
2016
, “
Origami Building Blocks: Generic and Special Four-vertices
,”
Phys. Rev. E
,
93
(
2
), p.
023003
.
14.
Fang
,
H.
,
Li
,
S.
,
Ji
,
H.
, and
Wang
,
K. W.
,
2016
, “
Uncovering the Deformation Mechanisms of Origami Metamaterials by Introducing Generic Degree-Four Vertices
,”
Phys. Rev. E
,
94
(
4
), p.
043002
.
15.
Lin
,
Z.
,
Novelino
,
L. S.
,
Wei
,
H.
,
Alderete
,
N. A.
,
Paulino
,
G. H.
,
Espinosa
,
H. D.
, and
Krishnaswamy
,
S.
,
2020
, “
Folding at the Microscale: Enabling Multifunctional 3D Origami-Architected Metamaterials
,”
Small
,
16
(
35
), p.
2002229
.
16.
Yellowhorse
,
A.
,
Tolman
,
K.
, and
Howell
,
L. L.
,
2017
, “
Optimization of Origami-Based Tubes for Lightweight Deployable Structures
,”
Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 41st Mechanisms and Robotics Conference
,
Cleveland, OH
,
Aug. 6–9
.
17.
Zimmermann
,
L.
, and
Stanković
,
T.
,
2020
, “
Rigid and Flat Foldability of a Degree-Four Vertex in Origami
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011004
.
18.
Kawasaki
,
T.
,
1989
, “
On the Relation Between Mountain-Creases and Valley-Creases of a Flat Origami
,”
Proceedings of the First International Meeting on Origami Science and Technology
,
H.
Huzita
, ed.,
Ferrara, Italy
,
Dec. 6–7
.
19.
Justin
,
J.
,
1986
, “
Mathematics of Origami, Part 9
,”
Brit. Origami
,
118
, pp.
28
30
.
20.
Yao
,
Y. C.
,
Chou
,
P. H.
,
Lin
,
H. H.
,
Wang
,
S. T.
,
Liu
,
C. L.
, and
Chang
,
M. C.
,
2020
, “
Risk Factors of Cage Subsidence in Patients Received Minimally Invasive Transforaminal Lumbar Interbody Fusion
,”
Spine
,
45
(
19
), pp.
E1279
E1285
.
21.
Ario
,
I.
,
Nakazawa
,
M.
,
Tanaka
,
Y.
,
Tanikura
,
I.
, and
Ono
,
S.
,
2013
, “
Development of a Prototype Deployable Bridge Based on Origami Skill
,”
Autom. Constr.
,
32
, pp.
104
11
.
22.
Rodrigues
,
O.
,
1840
, “
Des lois géométriques qui régissent les déplacements d’un systéme solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire
,”
J. Math. Pures Appl.
,
5
, pp.
380
440
.
23.
Webb
,
D. C.
,
Reynolds
,
E.
,
Halverson
,
D. M.
, and
Howell
,
L. L.
,
2022
, “
Miura-ori Inspired Smooth Sheet Attachments for Zipper-Coupled Tubes
,”
Mathematics
,
10
(
15
), p.
2643
.
24.
Liu
,
Z.
,
Fang
,
H.
,
Xu
,
J.
, and
Wang
,
K. W.
,
2021
, “
A Novel Origami Mechanical Metamaterial Based on Miura-Variant Designs: Exceptional Multistability and Shape Reconfigurability
,”
Smart Mater. Struct.
,
30
(
8
), p.
085029
.
25.
Wo
,
Z.
,
Raneses
,
J. M.
, and
Filipov
,
E. T.
,
2022
, “
Locking Zipper-Coupled Origami Tubes for Deployable Energy Absorption
,”
ASME J. Mech. Rob.
,
14
(
4
), p.
041007
.
You do not currently have access to this content.