Abstract

In this work, we propose a novel bio-inspired swing decoupling mechanism supporting high precision motion systems, which is composed of multiple co-directional input branches with a rigid swing unit and an anti-rotational guiding unit. By actively adjusting the input displacements, the decoupling mechanism can switch between the swing and translational modes, where the parasitic rotations can be significantly suppressed by the anti-rotational guiding unit. With this, fully decoupled X and Y linear motions are obtained in the presence of co-directional input branches. A theoretical model of the decoupling mechanism is also established to accurately describe the decoupling behavior, which is verified by finite element simulations. A prototype of the proposed swing decoupling mechanism is fabricated and instrumented with comprehensive experimental apparatus, where the experimental results effectively validate the excellent decoupling performance and demonstrate good potentials to precision engineering applications.

References

1.
Yu
,
J.
,
Xie
,
Y.
,
Li
,
Z.
, and
Hao
,
G.
,
2015
, “
Design and Experimental Testing of an Improved Large-Range Decoupled XY Compliant Parallel Micromanipulator
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
044503
.
2.
Zhu
,
Z.
,
Zhou
,
X.
,
Liu
,
Z.
,
Wang
,
R.
, and
Zhu
,
L.
,
2014
, “
Development of a Piezoelectrically Actuated Two-Degree-of-Freedom Fast Tool Servo With Decoupled Motions for Micro-/Nanomachining
,”
Precis. Eng.
,
38
(
4
), pp.
809
820
.
3.
Wu
,
Z.
, and
Xu
,
Q.
,
2018
, “
Design, Optimization and Testing of a Compact XY Parallel Nanopositioning Stage With Stacked Structure
,”
Mech. Mach. Theory
,
126
, pp.
171
188
.
4.
Tuma
,
T.
,
Lygeros
,
J.
,
Kartik
,
V.
,
Sebastian
,
A.
, and
Pantazi
,
A.
,
2012
, “
High-Speed Multiresolution Scanning Probe Microscopy Based on Lissajous Scan Trajectories
,”
Nanotechnology
,
23
(
18
), p.
185501
.
5.
Li
,
M.
,
Jiang
,
Z.
,
Wang
,
P.
,
Sun
,
L.
, and
Ge
,
S. S.
,
2014
, “
Control of a Quadruped Robot With Bionic Springy Legs in Trotting Gait
,”
J. Bionic Eng.
,
11
(
2
), pp.
188
198
.
6.
Liu
,
Y.
, and
Zhang
,
Z.
,
2022
, “
A Large Range Compliant Nano-Manipulator Supporting Electron Beam Lithography
,”
ASME J. Mech. Des.
,
144
(
4
), p.
043303
.
7.
Chen
,
F.
,
Zhang
,
Q.
,
Gao
,
Y.
, and
Dong
,
W.
,
2022
, “
Design and Analysis of a Compact Piezo-Actuated Microgripper With a Large Amplification Ratio
,”
ASME J. Mech. Des.
,
144
(
5
), p.
054503
.
8.
Deng
,
J.
,
Liu
,
Y.
,
Chen
,
W.
, and
Yu
,
H.
,
2019
, “
A XY Transporting and Nanopositioning Piezoelectric Robot Operated by Leg Rowing Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
24
(
1
), pp.
207
217
.
9.
Cheng
,
M.
,
Fan
,
S.
,
Yang
,
D.
, and
Jiang
,
L.
,
2020
, “
Design of an Underactuated Finger Based on a Novel Nine-Bar Mechanism
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
065001
.
10.
Zhang
,
L.
,
Liu
,
P.
, and
Yan
,
P.
,
2021
, “
A Novel Compact Tilt Stage With Additive Manufacturable Spatial Flexure Mechanism Driven by Asymmetric Stiffness
,”
Mech. Mach. Theory
,
166
, p.
104443
.
11.
Liu
,
Y.
,
Wang
,
L.
,
Gu
,
Z.
,
Quan
,
Q.
, and
Deng
,
J.
,
2018
, “
Development of a Two-Dimensional Linear Piezoelectric Stepping Platform Using Longitudinal-Bending Hybrid Actuators
,”
IEEE Trans. Ind. Electron.
,
66
(
4
), pp.
3030
3040
.
12.
Deng
,
J.
,
Liu
,
Y.
,
Chen
,
W.
, and
Yu
,
H.
,
2019
, “
A XY Transporting and Nanopositioning Piezoelectric Robot Operated by Leg Rowing Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
24
(
1
), pp.
207
217
.
13.
Deng
,
J.
,
Liu
,
Y.
,
Zhang
,
S.
, and
Li
,
J.
,
2020
, “
Development of a Nanopositioning Platform With Large Travel Range Based on Bionic Quadruped Piezoelectric Actuator
,”
IEEE/ASME Trans. Mechatron.
,
26
(
4
), pp.
2059
2070
.
14.
Gao
,
X.
,
Zhang
,
S.
,
Deng
,
J.
, and
Liu
,
Y.
,
2019
, “
Development of a Small Two-Dimensional Robotic Spherical Joint Using a Bonded-Type Piezoelectric Actuator
,”
IEEE Trans. Ind. Electron.
,
68
(
1
), pp.
724
733
.
15.
Bachmann
,
R. J.
,
Boria
,
F. J.
,
Vaidyanathan
,
R.
,
Ifju
,
P. G.
, and
Quinn
,
R. D.
,
2009
, “
A Biologically Inspired Micro-Vehicle Capable of Aerial and Terrestrial Locomotion
,”
Mech. Mach. Theory
,
44
(
3
), pp.
513
526
.
16.
Hao
,
G.
, and
Yu
,
J.
,
2016
, “
Design, Modelling and Analysis of a Completely-Decoupled XY Compliant Parallel Manipulator
,”
Mech. Mach. Theory
,
102
, pp.
179
195
.
17.
Yang
,
S.
,
Chen
,
W.
,
Liu
,
J.
, and
Chen
,
W.
,
2017
, “
Design, Analysis and Testing of a Novel Decoupled 2-dof Flexure-Based Micropositioning Stage
,”
J. Micromech. Microeng.
,
27
(
9
), p.
095010
.
18.
Zhang
,
Q.
,
Zhao
,
J.
,
Shen
,
X.
,
Xiao
,
Q.
,
Huang
,
J.
, and
Wang
,
Y.
,
2019
, “
Design, Modeling, and Testing of a Novel XY Piezo-Actuated Compliant Micro-positioning Stage
,”
Micromachines
,
10
(
9
), p.
581
.
19.
Zhu
,
J.
,
Hao
,
G.
,
Li
,
S.
, and
Kong
,
X.
,
2022
, “
A Compact Mirror-Symmetrical XY Compliant Parallel Manipulator for Minimizing Parasitic Rotations
,”
ASME J. Mech. Des.
,
144
(
7
), p.
073303
.
20.
Tang
,
H.
,
Gao
,
J.
,
Chen
,
X.
,
Yu
,
K.-M.
,
To
,
S.
,
He
,
Y.
,
Chen
,
X.
,
Zeng
,
Z.
,
He
,
S.
,
Chen
,
C.
, and
Li
,
Y.
,
2017
, “
Development and Repetitive-Compensated PID Control of a Nanopositioning Stage With Large-Stroke and Decoupling Property
,”
IEEE Trans. Ind. Electron.
,
65
(
5
), pp.
3995
4005
.
21.
Shao
,
S.
,
Xu
,
M.
,
Zhang
,
S.
, and
Xie
,
S.
,
2016
, “
Stroke Maximizing and High Efficient Hysteresis Hybrid Modeling for a Rhombic Piezoelectric Actuator
,”
Mech. Syst. Signal Process.
,
75
, pp.
631
647
.
22.
Wang
,
F.
,
Huo
,
Z.
,
Liang
,
C.
,
Shi
,
B.
,
Tian
,
Y.
,
Zhao
,
X.
, and
Zhang
,
D.
,
2018
, “
A Novel Actuator-Internal Micro/Nano Positioning Stage With an Arch-Shape Bridge-Type Amplifier
,”
IEEE Trans. Ind. Electron.
,
66
(
12
), pp.
9161
9172
.
23.
Zhu
,
W.-L.
,
Zhu
,
Z.
,
Guo
,
P.
, and
Ju
,
B.-F.
,
2018
, “
A Novel Hybrid Actuation Mechanism Based XY Nanopositioning Stage With Totally Decoupled Kinematics
,”
Mech. Syst. Signal Process.
,
99
, pp.
747
759
.
24.
Kuresangsai
,
P.
, and
Cole
,
M. O. T.
,
2019
, “
Kinematic Modeling and Design Optimization of Flexurejointed Planar Mechanisms Using Polynomial Bases for Flexure Curvature
,”
Mech. Mach. Theory
,
132
, pp.
1050
0472
.
25.
Qin
,
Y.
,
Shirinzadeh
,
B.
,
Tian
,
Y.
,
Zhang
,
D.
, and
Bhagat
,
U.
,
2013
, “
Design and Computational Optimization of a Decoupled 2-dof Monolithic Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
19
(
3
), pp.
872
881
.
26.
Wan
,
S.
, and
Xu
,
Q.
,
2016
, “
Design and Analysis of a New Compliant XY Micropositioning Stage Based on Roberts Mechanism
,”
Mech. Mach. Theory
,
95
, pp.
125
139
.
27.
Zhu
,
W.-L.
,
Zhu
,
Z.
,
Shi
,
Y.
,
Wang
,
X.
,
Guan
,
K.
, and
Ju
,
B.-F.
,
2016
, “
Design, Modeling, Analysis and Testing of a Novel Piezo-Actuated XY Compliant Mechanism for Large Workspace Nano-Positioning
,”
Smart Mater. Struct.
,
25
(
11
), p.
115033
.
28.
Cheng
,
C.-H.
, and
Hung
,
S.-K.
,
2015
, “
A Piezoelectric Two-Degree-of-Freedom Nanostepping Motor With Parallel Design
,”
IEEE/ASME Trans. Mechatron.
,
21
(
4
), pp.
2197
2199
.
29.
Liljebck
,
P.
,
Pettersen
,
K. Y.
,
Stavdahl
,
Y.
, and
Gravdahl
,
J. T.
,
2012
, “
A Review on Modelling, Implementation, and Control of Snake Robots
,”
Rob. Auton. Syst.
,
60
(
1
), pp.
29
40
.
30.
Rubbert
,
L.
,
Bitterli
,
R.
,
Ferrier
,
N.
,
Fifanski
,
S.
,
Vardi
,
I.
, and
Henein
,
S.
,
2015
, “
Isotropic Springs Based on Parallel Flexure Stages
,”
Precis. Eng.
,
43
, pp.
132
145
.
31.
Chen
,
G.
,
Xiong
,
B.
, and
Huang
,
X.
,
2011
, “
Finding the Optimal Characteristic Parameters for 3R Pseudo-Rigid-Body Model Using an Improved Particle Swarm Optimizer
,”
Precis. Eng.
,
35
(
3
), pp.
505
511
.
32.
Liu
,
P.
, and
Yan
,
P.
,
2016
, “
A New Model Analysis Approach for Bridge-Type Amplifiers Supporting Nano-Stage Design
,”
Mech. Mach. Theory
,
99
, pp.
176
188
.
33.
Li
,
Y.
, and
Xu
,
Q.
,
2009
, “
Design and Analysis of a Totally Decoupled Flexure-Based XY Parallel Micromanipulator
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
645
657
.
You do not currently have access to this content.