Abstract

This paper presents a novel geometric modeling method for direct displacement analysis of 6-4 Stewart platforms based on conformal geometric algebra (CGA). First, a geometric constraint relationship of four lines and a plane intersecting at a point is published. Second, a new coordinate-invariant geometric constraint equation of 6-4 Stewart platforms is deduced by CGA operation. Third, five polynomial equations are established by CGA theory. Fourth, based on the above six equations, a 5 × 5 Sylvester’s matrix is formulated by using Sylvester’s Dialytic elimination method and Gröbner bases method under the graded reverse lexicographical order. Finally, the coordinates of four points on the moving platform are revealed. Besides, a numerical example is used to prove the validity of the proposed method. The novelty of this study is that a whole geometric modeling method by geometric constraint relationship of four lines and a plane intersecting at a point is put forward under the CGA framework, which has good intuition and offers a novel idea for solving the other complex mechanisms. At the same time, Sylvester’s matrix constructed by this method is the smallest one in the known literature for forward displacement analysis of 6-4 Stewart platforms.

References

1.
Gough
,
V. E.
,
1956
, “
Contribution to Discussion to Papers on Research in Automobile Stability, Control and in Tire Performance
,”
Proc. Automotive Division Inst. Mech. Eng.
,
171
, pp.
392
394
.
2.
Stewart
,
D.
,
1965
, “
A Platform With Six Degree of Freedom
,”
Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng.
,
180
(
15
), pp.
371
386
.
3.
Hunt
,
K. H.
,
1983
, “
Structural Kinematics of In-Parallel-Actuated Robot-Arms
,”
ASME J. Mech. Des.
,
105
(
4
), pp.
705
712
.
4.
Innocenti
,
C.
,
1995
, “
Direct Kinematics in Analytical Form of the 6-4 Fully-Parallel Mechanism
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
89
95
.
5.
Liao
,
Q.
,
Seneviratne
,
L. D.
, and
Earles
,
S. W. E.
,
1995
, “
Forward Positional Analysis for the General 4–6 In-Parallel Platform
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
209
(
13
), pp.
55
67
.
6.
Zhang
,
Y.
,
Liao
,
Q.
, and
Wei
,
S.
,
2012
, “
Forward Displacement Analysis of a General 6-4 In-Parallel Platform
,”
J. Mech. Eng.
,
48
(
9
), pp.
27
32
.
7.
Zhang
,
Y.
,
Liu
,
X.
,
Wei
,
S.
,
Wang
,
Y.
,
Zhang
,
X.
,
Zhang
,
P.
, and
Liang
,
C.
,
2018
, “
A Geometric Modeling and Computing Method for Direct Kinematic Analysis of 6-4 Stewart Platforms
,”
Math. Probl. Eng.
,
2018
(
PT.2
), pp.
1
9
.
8.
Li
,
H.
,
Hestenes
,
D.
, and
Rockwood
,
A.
,
2001
, “Generalized Homogenous Coordinates for Computational Geometry,”
Geometric Computing With Clifford Algebras
,
Springer
,
Berlin Heidelberg
, pp.
27
59
.
9.
Li
,
H.
,
2005
, “
Conformal Geometric Algebra—A New Framework for Computational Geometry
,”
J. Comput.-Aided Des. Comput. Graph.
,
17
(
11
), pp.
2383
2393
.
10.
Rosenhahn
,
B.
, and
Sommer
,
G.
,
2005
, “
Pose Estimation in Conformal Geometric Algebra Part I: The Stratification of Mathematical Spaces
,”
J. Math. Imaging Vision
,
22
(
1
), pp.
27
48
.
11.
Hildenbrand
,
D.
,
Perwass
,
C.
,
Dorst
,
L.
, and
Fontijne
,
D.
,
2004
, “Geometric Algebra and Its Application to Computer Graphics,” Euro Graphics 2004 Tutorial.
12.
John
,
A. V.
,
2008
,
Geometric Algebra for Computer Graphics
,
Springer
,
Berlin
.
13.
Hildenbrand
,
D.
,
2005
, “
Geometric Computing in Computer Graphics Using Conformal Geometric Algebra
,”
Comput. Graph.
,
29
(
5
), pp.
795
803
.
14.
Zamora
,
J.
, and
Bayro-Corrochano
,
E.
,
2004
, “
Inverse Kinematics, Fixation and Grasping Using Conformal Geometric Algebra
,”
2004 IEEE/RSJ Int. Conf. Intell. Rob. Syst.
,
4
(
11
), pp.
3841
3846
.
15.
Bayro-Corrochano
,
E.
, and
Zamora-Esquivel
,
J.
,
2007
, “
Differential and Inverse Kinematics of Robot Devices Using Conformal Geometric Algebra
,”
Robotica
,
25
(
01
), pp.
43
61
.
16.
Hildenbrand
,
D.
,
Zamora
,
J.
, and
Bayro-Corrochano
,
E.
,
2008
, “
Inverse Kinematics Computation in Computer Graphics and Robotics Using Conformal Geometric Algebra
,”
Adv. Appl. Clifford Algebras
,
18
(
3–4
), pp.
699
713
.
17.
Kim
,
J. S.
,
Jeong
,
Y. H.
, and
Park
,
J. H.
,
2015
, “
Inverse Kinematics and Geometric Singularity Analysis of a 3-SPS/S Redundant Motion Mechanism Using Conformal Geometric Algebra
,”
Mech. Mach. Theory
,
90
, pp.
23
36
.
18.
Kleppe
,
A.
, and
Egeland
,
O.
,
2016
, “
Inverse Kinematics for Industrial Robots Using Conformal Geometric Algebra
,”
Model. Identif. Control
,
37
(
1
), pp.
63
75
.
19.
Tørdal
,
S. S.
,
Hovland
,
G.
, and
Yapin
,
I.
,
2017
, “
Efficient Implementation of Inverse Kinematics on a 6-DOF Industrial Robot Using Conformal Geometric Algebra
,”
Adv. Appl. Clifford Algebras
,
27
(
3
), pp.
2067
2082
.
20.
Hrdina
,
J.
,
Návrat
,
A.
, and
Vasík
,
P.
,
2018
, “
Notes on Planar Inverse Kinematics Based on Geometric Algebra
,”
Adv. Appl. Clifford Algebras
,
28
(
3
), p.
71
.
21.
Lian
,
B.
,
2018
, “
Geometric Error Modeling of Parallel Manipulators Based on Conformal Geometric Algebra
,”
Adv. Appl. Clifford Algebras
,
28
(
1
), p.
30
.
22.
Qi
,
Y.
,
Sun
,
T.
, and
Song
,
Y.
,
2017
, “
Type Synthesis of Parallel Tracking Mechanism With Varied Axes by Modeling Its Finite Motions Algebraically
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
054504
.
23.
Song
,
Y.
,
Han
,
P.
, and
Wang
,
P.
,
2018
, “
Type Synthesis of 1T2R and 2R1T Parallel Mechanisms Employing Conformal Geometric Algebra
,”
Mech. Mach. Theory
,
121
, pp.
475
486
.
24.
Hrdina
,
J.
,
Návrat
,
A.
,
Vasík
,
P.
, and
Matousek
,
R.
,
2017
, “
CGA-Based Robotic Snake Control
,”
Adv. Appl. Clifford Algebras
,
27
(
1
), pp.
621
632
.
25.
Hrdina
,
J.
,
Návrat
,
A.
,
Vasík
,
P.
, and
Matousek
,
R.
,
2017
, “
Geometric Control of the Trident Snake Robot Based on CGA
,”
Adv. Appl. Clifford Algebras
,
27
(
1
), pp.
633
645
.
26.
Hrdina
,
J.
,
Návrat
,
A.
, and
Vasík
,
P.
,
2016
, “
Control of 3-Link Robotic Snake Based on Conformal Geometric Algebra
,”
Adv. Appl. Clifford Algebras
,
26
(
3
), pp.
1069
1080
.
27.
Zhu
,
G.
,
Wei
,
S.
,
Zhang
,
Y.
, and
Liao
,
Q.
,
2022
, “
CGA-Based Novel Modeling Method for Solving the Forward Displacement Analysis of 3-RPR Planar Parallel Mechanism
,”
Mech. Mach. Theory
,
168
, p.
104595
.
28.
Zhang
,
Y.
,
Kong
,
X.
,
Wei
,
S.
,
Li
,
D.
, and
Liao
,
Q.
,
2018
, “
CGA-Based Approach to Direct Kinematics of Parallel Mechanisms With the 3-RS Structure
,”
Mech. Mach. Theory
,
124
, pp.
162
178
.
29.
Huang
,
X.
,
Ma
,
C.
, and
Su
,
H.
,
2019
, “
A Geometric Algebra Algorithm for the Closed-Form Forward Displacement Analysis of 3-PPS Parallel Mechanisms
,”
Mech. Mach. Theory
,
137
, pp.
280
296
.
You do not currently have access to this content.