Abstract

Developing a robotic torso mechanism is crucial in replicating human mobility in humanoid robots. Previous research has presented the LARMbot humanoid's torso as a potential solution, which has now been improved with a novel design proposed in this paper. We conduct a kinematic analysis on the proposed LARMbot torso design, which is developed through an analysis of the human spine's structure. A kinematic model of the novel design is proposed using piecewise constant curvature to capture the relationship between input and output parameters and to represent the workspace. A prototype is utilized for conducting experiments to test the human-like movements of the novel mechanism. The outcomes show that the proposed LARMbot torso architecture can enhance performance. The generated humanoid torso prototype has the capacity to bend approximately 30 deg, and as such, it can be expected to make humanoid robots achieve human-like motion and tasks.

References

1.
Ting
,
C.-H.
,
Yeo
,
W.-H.
,
King
,
Y.-J.
,
Chuah
,
Y.-D.
,
Lee
,
J.-V.
, and
Khaw
,
W.-B.
,
2014
, “
Humanoid Robot: A Review of the Architecture, Applications and Future Trend
,”
Res. J. Appl. Sci., Eng. Technol.
,
7
(
7
), pp.
1364
1369
.
2.
Saeedvand
,
S.
,
Jafari
,
M.
,
Aghdasi
,
H.
, and
Baltes
,
J.
,
2019
, “
A Comprehensive Survey on Humanoid Robot Development
,”
Knowl. Eng. Rev.
,
34
, p.
E20
.
3.
Hayosh
,
D.
,
Liu
,
X.
, and
Lee
,
K.
,
2020
, “
Woody: Low-Cost, Open-Source Humanoid Torso Robot
,”
Proceedings of the 2020 17th International Conference on Ubiquitous Robots (UR)
,
Kyoto, Japan
,
June 22–26
, pp.
247
252
.
4.
Stepanova
,
K.
,
Pajdla
,
T.
, and
Hoffmann
,
M.
,
2019
, “
Robot Self-Calibration Using Multiple Kinematic Chains—A Simulation Study on the ICub Humanoid Robot
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
1900
1907
.
5.
Specian
,
A.
,
Mead
,
R.
,
Kim
,
S.
,
Mataric
,
M.
, and
Yim
,
M.
,
2022
, “
Quori: A Community-Informed Design of a Socially Interactive Humanoid Robot
,”
IEEE Trans. Rob.
,
38
(
3
), pp.
1755
1772
.
6.
Yu
,
Z.
,
Huang
,
Q.
,
Ma
,
G.
,
Chen
,
X.
,
Zhang
,
W.
,
Li
,
J.
, and
Gao
,
J.
,
2014
, “
Design and Development of the Humanoid Robot BHR-5
,”
Adv. Mech. Eng.
,
2014
(
6
), p.
852937
.
7.
Lin
,
C.
,
Lee
,
K.
,
Wang
,
H.
,
Kuo
,
P.
,
Ho
,
Y.
, and
Li
,
T. S.
,
2014
, “
Design and Implementation of 3-DOF Dynamic Balancing Waist and Its Fuzzy Control for Adult-Sized Humanoid Robot
,”
Proceedings of the 2014 SICE Annual Conference (SICE)
,
Sapporo, Japan
,
Sept. 9–12
, pp.
2133
2138
.
8.
Cao
,
B.
,
Sun
,
K.
,
Jin
,
M.
,
Huang
,
C.
,
Zhang
,
Y.
, and
Liu
,
H.
,
2016
, “
Design and Development of a Two-DOF Torso for Humanoid Robot
,”
Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
,
Banff, AB, Canada
,
July 12–15
, pp.
46
51
.
9.
Goel
,
D.
,
Teja
,
S. P.
,
Dewangan
,
P.
,
Shah
,
S. V.
,
Sarkar
,
A.
, and
Krishna
,
K. M.
,
2016
, “
Design and Development of a Humanoid with Articulated Torso
,”
Proceedings of the 2016 International Conference on Robotics and Automation for Humanitarian Applications (RAHA)
,
Amritapuri, India
,
Dec. 18–20
, pp.
1
5
.
10.
Ranjan
,
S.
,
Gupta
,
S. K.
,
Varshney
,
A.
,
Singh
,
A.
,
Das
,
R.
,
Kant Gupta
,
S.
, and
Varshney
,
U.
,
2019
, “
Mechanical Design of Humanoid Robot, AUTOMI
,” https://www.researchgate.net/publication/335927257.
11.
Fan
,
X.
,
Shu
,
X.
,
Tu
,
B.
,
Liu
,
C.
,
Ni
,
F.
, and
Jiang
,
Z.
,
2023
, “
A Humanoid Robot Teleoperation Approach Based on Waist–Arm Coordination
,”
Ind. Rob.
,
50
(
5
), pp.
1
10
.
12.
Ramalho
,
A. S.
,
Nakamura
,
Y.
,
Nakata
,
Y.
, and
Ishiguro
,
H.
, “
Design Strategy for Robotic Spines of Androids with a Natural Postural Appearance
,”
Proceedings of the 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids)
,
Cancun, Mexico
,
Nov. 15–17
, pp.
312
317
..
13.
Kuehn
,
D.
,
Beinersdorf
,
F.
,
Simnofske
,
M.
,
Bernhard
,
F.
, and
Kirchner
,
F.
,
2013
, “
Towards an Active Spine for Mobile Robots
,”
Singapore
,
Oct. 2–4
, pp.
1
10
14.
Yu
,
S.
,
Nakata
,
Y.
,
Nakamura
,
Y.
, and
Ishiguro
,
H.
,
2017
, “
A Design of Robotic Spine Composed of Parallelogram Actuation Modules
,”
Artif. Life Robot.
,
22
(
4
), pp.
477
482
.
15.
Ciszkiewicz
,
A.
, and
Milewski
,
G.
,
2016
, “
A Novel Kinematic Model for a Functional Spinal Unit and a Lumbar Spine
,”
Acta Bioeng. Biomech.
,
18
(
1
), pp.
77
85
.
16.
Penčić
,
M.
,
Savic
,
S.
,
Tasevski
,
J.
,
Rackov
,
M.
, and
Borovac
,
B.
,
2013
, “
A Robot Multi-Segment Lumbar Spine-Mechanical Model and Control Algorithm
,”
Proceedings of the 6th PSU-UNS International Conference on Engineering and Technology—ICET 2013
,
Novi Sad, Serbia
,
May 15–17
, ASME Paper No. T.10-2.1, pp.
1
5
.
17.
Reinecke
,
J.
,
Deutschmann
,
B.
, and
Fehrenbach
,
D.
,
2016
, “
A Structurally Flexible Humanoid Spine Based on a Tendon-Driven Elastic Continuum
,”
Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
4714
4721
.
18.
Wang
,
S.
,
Zhu
,
Q.
,
Xiong
,
R.
, and
Chu
,
J.
,
2014
, “
Flexible Robotic Spine Actuated by Shape Memory Alloy
,”
Int. J. Adv. Rob. Syst.
,
11
(
4
), p.
56
.
19.
Kakehashi
,
Y.
,
Okada
,
K.
, and
Inaba
,
M.
,
2020
, “
Development of Continuum Spine Mechanism for Humanoid Robot: Biomimetic Supple and Curvilinear Spine Driven by Tendon
,”
Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft)
,
New Haven, CT
,
May 15–July
, pp.
312
317
.
20.
Li
,
T.
,
Yao
,
P.
,
Luo
,
M.
,
Tan
,
Z.
,
Wang
,
M.
, and
Guo
,
Z.
,
2018
, “
Design and Kinematics Analysis of a Novel Six-Degree-of-Freedom Serial Humanoid Torso
,”
Int. J. Adv. Rob. Syst.
,
15
(
1
), p.
172988141774812
.
21.
Ku
,
B.
,
Wang
,
S.
, and
Banerjee
,
A.
,
2019
, “
A Spring-Aided Two-Dimensional Electromechanical Spine Architecture for Bio-Inspired Robots
,”
Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Macau, China
,
Nov. 3–8
, pp.
793
798
.
22.
Penčić
,
M.
,
Rackov
,
M.
,
Čavić
,
M.
,
Kiss
,
I.
, and
Cioatǎ
,
V. G.
,
2018
, “
Social Humanoid Robot SARA: Development of the Wrist Mechanism
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
294
(
1
), p.
012079
.
23.
Kuehn
,
D.
,
Dettmann
,
A.
,
Kirchner
,
F.
, and
Kirchner
,
F.
,
2018
, “
Analysis of Using an Active Artificial Spine in a Quadruped Robot
,”
Proceedings of the 2018 4th International Conference on Control, Automation and Robotics (ICCAR)
,
Auckland, New Zealand
,
Apr. 20–23
, pp.
37
42
.
24.
Cafolla
,
D.
, and
Ceccarelli
,
M.
,
2016
, “
Design and Simulation of a Cable-Driven Vertebra-Based Humanoid Torso
,”
Int. J. Humanoid Rob.
,
13
(
4
), pp.
1650015
.
25.
Russo
,
M.
,
Cafolla
,
D.
, and
Ceccarelli
,
M.
,
2018
, “
Design and Experiments of a Novel Humanoid Robot With Parallel Architectures
,”
Robotics
,
7
(
4
), pp.
79
.
26.
Ceccarelli
,
M.
,
Russo
,
M.
, and
Cuauhtemoc
,
M.-C.
,
2020
, “
Parallel Architectures for Humanoid Robots
,”
Robotics
,
9
(
4
), p.
75
.
27.
Russo
,
M.
,
Ceccarelli
,
M.
, and
Cafolla
,
D.
,
2021
, “
Kinematic Modelling and Motion Analysis of a Humanoid Torso Mechanism
,”
Appl. Sci.
,
11
(
6
), pp.
2607
.
28.
Gao
,
W.
, and
Ceccarelli
,
M.
,
2022
, “
Design and Performance Analysis of LARMbot Torso V1
,”
Micromachines
,
13
(
9
), pp.
1548
.
29.
Gao
,
W.
,
Russo
,
M.
, and
Ceccarelli
,
M.
,
2023
, “A Kinematic Analysis of a New LARMbot Torso Design,”
New Advances in Mechanisms, Transmissions and Applications. MeTrApp 2023. Mechanisms and Machine Science
, Vol.
124
,
M. A.
Laribi
,
C. A.
Nelson
,
M.
Ceccarelli
, and
S.
Zeghloul
, eds.,
Springer
,
Cham
.
30.
Saladin
,
K. S.
,
2008
,
Human Anatomy
,
McGraw Hill Higher Education
,
New York
.
31.
Cafolla
,
D.
,
Chen
,
I. M.
, and
Ceccarelli
,
M.
,
2015
, “
An Experimental Characterization of Human Torso Motion. Front
,”
Mech. Eng.
,
10
(
4
), pp.
311
325
.
32.
Robert J. Webster III and Bryan A. Jones
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1
22
.
33.
Russo
,
M.
,
Sadati
,
S. M. H.
,
Dong
,
X.
,
Mohammad
,
A.
,
Walker
,
I. D.
,
Bergeles
,
C.
,
Xu
,
K.
, and
Axinte
,
D. A.
,
2023
, “
Continuum Robots: An Overview
,”
Adv. Intell. Syst.
,
5
(
5
), p.
2200367
.
34.
Wang
,
Z.
,
Bao
,
S.
,
Wang
,
D.
,
Qian
,
S.
,
Zhang
,
J.
, and
Hai
,
M.
,
2023
, “
Design of a Novel Flexible Robotic Laparoscope Using a Two Degrees-of-Freedom Cable-Driven Continuum Mechanism With Major Arc Notches
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
064502
.
35.
Garriga-Casanovas
,
A.
, and
Rodriguez y Baena
,
F.
,
2018
, “
Kinematics of Continuum Robots With Constant Curvature Bending and Extension Capabilities
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011010
.
36.
Wang
,
H.
,
2020
,
Research on Spine-Inspired Continuum Robot Design and Stiffness Characteristics
,
Harbin Institute of Technology
,
Harbin, China
.
You do not currently have access to this content.