Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article presents an algorithm to perform self-calibration of cable-driven parallel robots (CDPRs), where the CDPR’s end-effector pose is estimated in conjunction with the calibration of biases in CDPR’s measurements. Two new metrics, known as the position dilution of precision (PDOP) and orientation dilution of precision (ODOP), are introduced as a means to quantify the quality of data collected with regards to self-calibration. These metrics are based on a covariance matrix that is computed online as part of the proposed self-calibration algorithm, which results in the PDOP and ODOP directly corresponding to the standard deviation of the position and orientation errors, respectively. These metrics are used to intuitively select which data points contribute to improved calibration, resulting in a computationally efficient algorithm requiring few data points to maintain accurate calibration. In addition, the PDOP and ODOP provide a means to assess when sufficient calibration data have been collected. Numerical results involving an inverse kinematic simulation with rigid cables and a dynamic simulation with flexible cables indicate that the proposed algorithm is capable of performing self-calibration in a computationally efficient manner. Moreover, the simulation results indicate that the proposed PDOP and ODOP metrics result in smaller position and orientation errors when used to prune the dataset compared to the observability indices found in the literature. Accuracy of the proposed algorithm is also confirmed through experiments when compared to ground-truth pose data.

References

1.
Miermeister
,
P.
,
Lächele
,
M.
,
Boss
,
R.
,
Masone
,
C.
,
Schenk
,
C.
,
Tesch
,
J.
,
Kerger
,
M.
,
Teufel
,
H.
,
Pott
,
A.
, and
Bülthoff
,
H. H.
,
2016
, “
The CableRobot Simulator Large Scale Motion Platform Based on Cable Robot Technology
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Daejeon, South Korea
,
Dec. 9–14
, pp.
3024
3029
.
2.
Khajepour
,
A.
,
Mendez
,
S. T.
,
Rushton
,
M.
,
Jamshidianfar
,
H.
,
Qi
,
R.
,
Pazooki
,
A.
,
Durali
,
L.
, and
Soltani
,
A.
,
2023
, “A Warehousing Robot: From Concept to Reality,”
Cable-Driven Parallel Robots
(
Mechanisms and Machine Science
),
S.
Caro
,
A.
Pott
, and
T.
Bruckmann
, eds., Vol.
132
,
Springer
,
Cham, Switzerland
, pp.
397
406
.
3.
Iturralde
,
K.
,
Feucht
,
M.
,
Illner
,
D.
,
Hu
,
R.
,
Pan
,
W.
,
Linner
,
T.
,
Bock
,
T.
,
Eskudero
,
I.
,
Rodriguez
,
M.
,
Gorrotxategi
,
J.
, et al.,
2022
, “
Cable-Driven Parallel Robot for Curtain Wall Module Installation
,”
Autom. Constr.
,
138
, p.
104235
.
4.
Pott
,
A.
, and
Schmidt
,
V.
,
2015
, “
On the Forward Kinematics of Cable-Driven Parallel Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
3182
3187
.
5.
Berti
,
A.
,
Merlet
,
J.-P.
, and
Carricato
,
M.
,
2016
, “
Solving the Direct Geometrico-Static Problem of Underconstrained Cable-Driven Parallel Robots by Interval Analysis
,”
Int. J. Robot. Res.
,
35
(
6
), pp.
723
239
.
6.
Pott
,
A.
,
2010
, “An Algorithm for Real-Time Forward Kinematics for Cable-Driven Parallel Robots,”
Advances in Robot Kinematics: Motion in Man and Machine
,
J.
Lenarčič
and
M. M.
Stanišić
, eds.,
Springer
,
Dordrecht, Netherlands
, pp.
529
538
.
7.
Mishra
,
U. A.
, and
Caro
,
S.
,
2022
, “
Forward Kinematics for Suspended Under-Actuated Cable-Driven Parallel Robots With Elastic Cables: A Neural Network Approach
,”
ASME J. Mech. Rob.
,
14
(
4
), p.
041008
.
8.
Merlet
,
J.-P.
,
2023
, “Advances in the Use of Neural Network for Solving the Direct Kinematics of CDPR with Sagging Cables,”
Cable-Driven Parallel Robots
(
Mechanisms and Machine Science
),
S.
Caro
,
A.
Pott
, and
T.
Bruckmann
, eds., Vol.
132
,
Springer
,
Cham, Switzerland
, pp.
30
39
.
9.
Pott
,
A.
,
2018
,
Cable-Driven Parallel Robots
,
Springer International Publishing
,
Cham, Switzerland
.
10.
Nguyen
,
V. L.
, and
Caverly
,
R. J.
,
2021
, “CDPR Forward Kinematics With Error Covariance Bounds for Unconstrained End-Effector Attitude Parameterizations,”
Cable-Driven Parallel Robots
(
Mechanisms and Machine Science
),
M.
Gouttefarde
,
T.
Bruckmann
, and
A.
Pott
, eds., Vol.
104
,
Springer
,
Cham, Switzerland
.
11.
Patel
,
S.
,
Nguyen
,
V. L.
, and
Caverly
,
R. J.
,
2023
, “
Forward Kinematics of a Cable-Driven Parallel Robot With Pose Estimation Error Covariance Bounds
,”
Mech. Mach. Theory
,
183
, p.
105231
.
12.
Gabaldo
,
S.
,
Idà
,
E.
, and
Carricato
,
M.
,
2022
, “Sensitivity of the Direct Kinematics of Underactuated Cable-Driven Parallel Robots to Redundant Sensor-Measurement Errors,”
Advances in Robot Kinematics 2022
(
Springer Proceedings in Advanced Robotics
),
O.
Altuzarra
and
A.
Kecskeméthy
, eds., Vol.
24
,
Springer
,
Cham, Switzerland
, pp.
131
138
.
13.
Gao
,
J.
,
Zhou
,
B.
,
Zi
,
B.
,
Qian
,
S.
, and
Zhao
,
P.
,
2022
, “
Kinematic Uncertainty Analysis of a Cable-Driven Parallel Robot Based on an Error Transfer Model
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051008
.
14.
Paty
,
T.
,
Binaud
,
N.
,
Wang
,
H.
, and
Segonds
,
S.
,
2023
, “
Sensitivity Analysis of a Suspended Cable-Driven Parallel Robot to Design Parameters
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
061001
.
15.
Merlet
,
J.-P.
,
2018
, “
An Experimental Investigation of Extra Measurements for Solving the Direct Kinematics of Cable-Driven Parallel Robots
,”
IEEE International Conference on Robotics and Automation
,
Brisbane, Australia
,
May 21–25
, pp.
6947
6952
.
16.
Chellal
,
R.
,
Cuvillon
,
L.
, and
Laroche
,
E.
,
2015
,
A Kinematic Vision-Based Position Control of a 6-DoF Cable-Driven Parallel Robot
,
Cable-Driven Parallel Robots
(
Mechanisms and Machine Science
),
A.
Pott
and
T.
Bruckmann
, eds., Vol.
32
,
Springer
,
Cham, Switzerland
, pp.
213
225
.
17.
Dallej
,
T.
,
Gouttefarde
,
M.
,
Andreff
,
N.
,
Hervé
,
P.-E.
, and
Martinet
,
P.
,
2019
, “
Modeling and Vision-Based Control of Large-Dimension Cable-Driven Parallel Robots Using a Multiple-Camera Setup
,”
Mechatronics
,
61
, pp.
20
36
.
18.
Zake
,
Z.
,
Chaumette
,
F.
,
Pedemonte
,
N.
, and
Caro
,
S.
,
2019
, “
Vision-Based Control and Stability Analysis of a Cable-Driven Parallel Robot
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
1029
1036
.
19.
Caverly
,
R. J.
, and
Forbes
,
J. R.
,
2016
, “
State Estimator Design for a Single Degree of Freedom Cable-Actuated System
,”
J. Frank. Inst.
,
353
(
18
), pp.
4845
4869
.
20.
Korayem
,
M. H.
,
Yousefzadeh
,
M.
, and
Kian
,
S.
,
2018
, “
Precise End-Effector Pose Estimation in Spatial Cable-Driven Parallel Robots With Elastic Cables Using a Data Fusion Method
,”
Measurement
,
130
, pp.
177
190
.
21.
Schenk
,
C. T.
,
2019
, “
Modelling and Control of a Cable-Driven Parallel Robot Methods for Vibration Reduction and Motion Quality Improvement
,” Ph.D. thesis,
University of Stuttgart
,
Stuttgart, Germany
.
22.
Nguyen
,
V. L.
, and
Caverly
,
R. J.
,
2021
, “
Cable-Driven Parallel Robot Pose Estimation Using Extended Kalman Filtering With Inertial Payload Measurements
,”
IEEE Robot. Autom. Lett.
,
6
(
2
), pp.
3615
3622
.
23.
Puri
,
N.
, and
Caverly
,
R. J.
,
2023
, “
Coupled Least-Squares Forward Kinematics and Extended Kalman Filtering for the Pose Estimation of a Cable-Driven Parallel Robot
,”
Int. J. Mech. Robot. Syst.
,
5
(
3
), pp.
270
289
.
24.
Garant
,
X.
,
Campeau-Lecours
,
A.
,
Cardou
,
P.
, and
Gosselin
,
C.
,
2018
,
Improving the Forward Kinematics of Cable-Driven Parallel Robots Through Cable Angle Sensors
,
Cable-Driven Parallel Robots
(
Mechanisms and Machine Science
),
C.
Gosselin
,
P.
Cardou
,
T.
Bruckmann
, and
A.
Pott
, eds., Vol.
53
,
Springer International Publishing
,
Cham, Switzerland
, pp.
167
179
.
25.
Gabaldo
,
S.
,
Idà
,
E.
, and
Carricato
,
M.
,
2023
,
Pose-Estimation Methods for Planar Underactuated Cable-Driven Parallel Robots
,
Cable-Driven Parallel Robots
(
Mechanisms and Machine Science
),
S.
Caro
,
A.
Pott
, and
T.
Bruckmann
, eds., Vol.
132
,
Springer
,
Cham, Switzerland
, pp.
3
15
.
26.
Martin
,
C.
,
Fabritius
,
M.
,
Stoll
,
J. T.
, and
Pott
,
A.
,
2021
,
Accuracy Improvement for CDPRs Based on Direct Cable Length Measurement Sensors
,
Cable-Driven Parallel Robots
(
Mechanisms and Machine Science
),
M.
Gouttefarde
,
T.
Bruckmann
, and
A.
Pott
, eds., Vol.
104
,
Springer
,
Cham, Switzerland
, pp.
348
359
.
27.
Wampler
,
C. W.
,
Hollerbach
,
J. M.
, and
Arai
,
T.
,
1995
, “
An Implicit Loop Method for Kinematic Calibration and Its Application to Closed-Chain Mechanisms
,”
IEEE Trans. Rob. Autom.
,
11
(
5
), pp.
710
724
.
28.
Li
,
Z.
,
Li
,
S.
, and
Luo
,
X.
,
2021
, “
An Overview of Calibration Technology of Industrial Robots
,”
IEEE/CAA J. Autom. Sin.
,
8
(
1
), pp.
23
36
.
29.
Zhang
,
B.
,
Zhou
,
F.
,
Shang
,
W.
, and
Cong
,
S.
,
2019
, “
Auto-Calibration and Online-Adjustment of the Kinematic Uncertainties for Redundantly Actuated Cable-Driven Parallel Robots
,”
IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM)
,
Toyonaka, Japan
,
July 3–5
, pp.
280
285
.
30.
Zavatta
,
M.
,
Chianura
,
M.
,
Pott
,
A.
, and
Carricato
,
M.
,
2020
, “
A Vision-Based Referencing Procedure for Cable-Driven Parallel Manipulators
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
044502
.
31.
Miermeister
,
P.
, and
Pott
,
A.
,
2012
, “Auto Calibration Method for Cable-Driven Parallel Robots Using Force Sensors,”
Latest Advances in Robot Kinematics
,
J.
Lenarčič
and
M.
Husty
, eds.,
Springer
,
Dordrecht, Netherlands
, pp.
269
276
.
32.
Joshi
,
S.
, and
Surianarayan
,
A.
,
2003
, “
Calibration of a 6-DOF Cable Robot Using Two Inclinometers
,”
Perform. Metr. Intell. Syst.
, pp.
3660
3665
.
33.
Wang
,
B.
,
Cardou
,
P.
, and
Caro
,
S.
,
2023
, “
An Approach for Predicting the Calibration Accuracy in Planar Cable-Driven Parallel Robots and Experiment Validation
,”
Meccanica
,
58
, pp.
2177
2196
.
34.
Merlet
,
J.-P.
,
2019
,
Improving Cable Length Measurements for Large CDPR Using the Vernier Principle
,
Cable-Driven Parallel Robots
(
Mechanisms and Machine Science
),
A.
Pott
and
T.
Bruckmann
, eds., Vol.
74
,
Springer
,
Cham, Switzerland
, pp.
47
58
.
35.
Lau
,
D.
,
2018
,
Initial Length and Pose Calibration for Cable-Driven Parallel Robots With Relative Length Feedback
,
Cable-Driven Parallel Robots
(
Mechanisms and Machine Science
),
C.
Gosselin
,
P.
Cardou
,
T.
Bruckmann
, and
A.
Pott
, eds., Vol.
53
,
Springer
,
Cham, Switzerland
, pp.
140
151
.
36.
Yuan
,
H.
,
Zhang
,
Y.
, and
Xu
,
W.
,
2019
,
On the Automatic Calibration of Redundantly Actuated Cable-Driven Parallel Robots
,
Cable-Driven Parallel Robots: CableCon 2019
(
Mechanisms and Machine Science
),
A.
Pott
and
T.
Bruckmann
, eds., Vol.
74
,
Springer
,
Cham, Switzerland
, pp.
357
366
.
37.
Idá
,
E.
,
Merlet
,
J.-P.
, and
Carricato
,
M.
,
2019
,
Automatic Self-Calibration of Suspended Under-Actuated Cable-Driven Parallel Robot Using Incremental Measurements
,
Cable-Driven Parallel Robots: CableCon 2019
(
Mechanisms and Machine Science
),
A.
Pott
and
T.
Bruckmann
, eds., Vol.
74
,
Springer
,
Cham, Switzerland
, pp.
333
344
.
38.
Wang
,
B.
, and
Caro
,
S.
,
2021
,
Exit Point, Initial Length and Pose Self-Calibration Method for Cable-Driven Parallel Robots
,
Mechanism Design for Robotics: MEDER 2021
, (
Mechanisms and Machine Science
),
S.
Zeghloul
,
M. A.
Laribi
, and
M.
Arsicault
, eds., Vol.
103
,
Springer
,
Cham, Switzerland
, pp.
90
101
.
39.
Zhang
,
Z.
,
Xie
,
G.
,
Shao
,
Z.
, and
Gosselin
,
C.
,
2022
, “
Kinematic Calibration of Cable-Driven Parallel Robots Considering the Pulley Kinematics
,”
Mech. Mach. Theory
,
169
, p.
104648
.
40.
Hollerbach
,
J. M.
, and
Wampler
,
C. W.
,
1996
, “
The Calibration Index and Taxonomy for Robot Kinematic Calibration Methods
,”
Int. J. Robot. Res.
,
15
(
6
), pp.
573
591
.
41.
Sun
,
Y.
, and
Hollerbach
,
J. M.
,
2008
, “
Observability Index Selection for Robot Calibration
,”
IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
831
836
.
42.
Joubair
,
A.
, and
Bonev
,
I. A.
,
2013
, “
Comparison of the Efficiency of Five Observability Indices for Robot Calibration
,”
Mech. Mach. Theory
,
70
, pp.
254
265
.
43.
Sun
,
Y.
, and
Hollerbach
,
J. M.
,
2008
, “
Active Robot Calibration Algorithm
,”
IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
1276
1281
.
44.
Nahvi
,
A.
, and
Hollerbach
,
J. M.
,
1996
, “
The Noise Amplification Index for Optimal Pose Selection in Robot Calibration
,”
IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
Apr. 22–28
, pp.
647
654
.
45.
Wang
,
H.
,
Gao
,
T.
,
Kinugawa
,
J.
, and
Kosuge
,
K.
,
2017
, “
Finding Measurement Configurations for Accurate Robot Calibration: Validation With a Cable-Driven Robot
,”
IEEE Trans. Robot.
,
33
(
5
), pp.
1156
1169
.
46.
Huang
,
C.
,
Xie
,
F.
,
Liu
,
X.-J.
, and
Meng
,
Q.
,
2022
, “
Measurement Configuration Optimization and Kinematic Calibration of a Parallel Robot
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031017
.
47.
Misra
,
P.
, and
Enge
,
P.
,
2011
,
Global Positioning System: Signals, Measurements, and Performance
, 2nd ed.,
Ganga-Jamuna Press
,
Lincoln, MA
.
48.
Caverly
,
R. J.
,
Bunker
,
K.
,
Patel
,
S.
, and
Nguyen
,
V. L.
,
2023
,
Forward Kinematics and Online Self-Calibration of Cable-Driven Parallel Robots with Covariance-Based Data Quality Assessment
,
Cable-Driven Parallel Robots
(
Mechanisms and Machine Science
),
S.
Caro
,
A.
Pott
, and
T.
Bruckmann
, eds., Vol.
132
,
Springer
,
Cham, Switzerland
, pp.
369
380
.
49.
Rife
,
J.
, and
Gebre-Egziabher
,
D.
,
2007
, “
Symmetric Overbounding of Correlated Errors
,”
Navigation
,
54
(
2
), pp.
109
124
.
50.
Crassidis
,
J. L.
, and
Junkins
,
J. L.
,
2004
,
Optimal Estimation of Dynamic Systems
,
CRC Press
,
Boca Raton, FL
.
51.
Johnson
,
C.
,
Ohlmeyer
,
E.
, and
Pepitone
,
T.
,
2000
, “
Attitude Dilution of Precision: A New Metric for Observability of Inflight Alignment Errors
,”
18th Applied Aerodynamics Conference
,
Denver, CO
,
Aug. 14–17
, p.
4277
.
52.
Yoon
,
S.
, and
Lundberg
,
J.
,
2001
, “
Euler Angle Dilution of Precision in GPS Attitude Determination
,”
IEEE Trans. Aero. Elec. Sys.
,
37
(
3
), pp.
1077
1083
.
53.
Hughes
,
P. C.
,
2004
,
Spacecraft Attitude Dynamics
,
Dover
,
Mineola, NY
.
54.
Fang
,
S.
,
Franitza
,
D.
,
Torlo
,
M.
,
Bekes
,
F.
, and
Hiller
,
M.
,
2004
, “
Motion Control of a Tendon-Based Parallel Manipulator Using Optimal Tension Distribution
,”
IEEE-ASME Trans. Mechatron.
,
9
(
3
), pp.
561
568
.
55.
Buaes
,
A. G.
,
2006
, “
A Low Cost One-Camera Optical Tracking System for Indoor Wide-Area Augmented and Virtual Reality Environments
,” Master’s thesis,
Federal University of Rio Grande do Sul
,
Porto Alegre, Brazil
.
56.
Puri
,
N.
, and
Caverly
,
R. J.
,
2022
,
Pose Estimation of a Cable-Driven Parallel Robot Using Kalman Filtering and Forward Kinematics Error Covariance Bounds
,
USCToMM Symposium on Mechanical Systems and Robotics
(
Mechanisms and Machine Science
),
P.
Larochelle
and
J. M.
McCarthy
, eds., Vol.
118
,
Springer
,
Cham, Switzerland
, pp.
65
75
.
You do not currently have access to this content.