Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This study investigates a novel design of a reconfigurable closed-chain leg for hexapod robot with enhanced terrain adaptability. A length adjustable hydraulic cylinder is incorporated into the Theo Jansen linkage in the proposed reconfigurable closed-chain leg, allowing for flexible trajectory by adjusting the length of the hydraulic cylinder. Kinematic model and system dynamics are analyzed considering the multi-body dynamics of the proposed system. To actively adapt to different terrains with flexible footprints, a variable-domain sliding mode control strategy to adjust the length of hydraulic cylinder is investigated and compared with other control strategies. Meanwhile, an active compliant control strategy of the driving motor is analyzed and deployed to improve the stability and compliance during walking. A prototype was fabricated and tested under various configurations. Results demonstrate that the variable-domain sliding mode control algorithm exhibits fast convergence, robustness, and smooth signals for hydraulic cylinder. In addition, the proposed active compliant control strategy of the driving motor can reduce the impact force and ensure stable equilibrium during walking. Therefore, the proposed reconfigurable closed-chain leg can enhance the terrain adaptability and enrich the applications of closed-chain legged robots.

References

1.
Raikov
,
A.
, and
Abrosimov
,
V.
,
2022
, “
Artificial Intelligence and Robots in Agriculture
,”
2022 15th International Conference Management of Large-Scale System Development (MLSD)
,
Moscow, Russian Federation
,
Sept. 26–28
, IEEE, pp.
1
5
.
2.
Wenger
,
P.
, and
Chablat
,
D.
,
2023
, “
A Review of Cuspidal Serial and Parallel Manipulators
,”
ASME J. Mech. Rob.
,
15
(
4
), p.
040801
.
3.
Liu
,
Y.
,
Bi
,
Q.
,
Yue
,
X.
,
Wu
,
J.
,
Yang
,
B.
, and
Li
,
Y.
,
2022
, “
A Review on Tensegrity Structures-Based Robots
,”
Mech. Mach. Theory
,
168
, p.
104571
.
4.
Komoda
,
K.
, and
Wagatsuma
,
H.
,
2017
, “
Energy-Efficacy Comparisons and Multibody Dynamics Analyses of Legged Robots With Different Closed-Loop Mechanisms
,”
Multibody Syst. Dyn.
,
40
(
2
), pp.
123
153
.
5.
Bledt
,
G.
,
Powell
,
M. J.
,
Katz
,
B.
,
Di Carlo
,
J.
,
Wensing
,
P. M.
, and
Kim
,
S.
,
2018
, “
Mit Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, IEEE, pp.
2245
2252
.
6.
Katz
,
B. G.
,
2018
,
A Low Cost Modular Actuator for Dynamic Robots
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
7.
Bjelonic
,
M.
,
Grandia
,
R.
,
Geilinger
,
M.
,
Harley
,
O.
,
Medeiros
,
V. S.
,
Pajovic
,
V.
,
Jelavic
,
E.
,
Coros
,
S.
, and
Hutter
,
M.
,
2022
, “
Offline Motion Libraries and Online MPC for Advanced Mobility Skills
,”
Int. J. Rob. Res.
,
41
(
9–10
), pp.
903
924
.
8.
Kumar
,
S.
,
Wöhrle
,
H.
,
de Gea Fernández
,
J.
,
Müller
,
A.
, and
Kirchner
,
F.
,
2020
, “
A Survey on Modularity and Distributivity in Series-Parallel Hybrid Robots
,”
Mechatronics
,
68
, p.
102367
.
9.
Singh
,
R.
, and
Bera
,
T.
,
2020
, “
Walking Model of Jansen Mechanism-Based Quadruped Robot and Application to Obstacle Avoidance
,”
Arab. J. Sci. Eng.
,
45
(
2
), pp.
653
664
.
10.
Kulandaidaasan Sheba
,
J.
,
Elara
,
M. R.
,
Martínez-García
,
E.
, and
Tan-Phuc
,
L.
,
2016
, “
Trajectory Generation and Stability Analysis for Reconfigurable Klann Mechanism Based Walking Robot
,”
Robotics
,
5
(
3
), p.
13
.
11.
Rosyid
,
A.
,
Stefanini
,
C.
, and
El-Khasawneh
,
B.
,
2023
, “
A Novel Walking Parallel Robot for On-Structure Three-Axis Machining of Large Structures
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
061016
.
12.
Zou
,
Q.
,
Zhang
,
D.
, and
Huang
,
G.
,
2022
, “
Dynamic Performance Evaluation of the Parallel Mechanism for a 3T2R Hybrid Robot
,”
Mech. Mach. Theory
,
172
, p.
104794
.
13.
Wu
,
J.
,
Guo
,
L.
,
Yan
,
S.
,
Li
,
Y.
, and
Yao
,
Y.-A.
,
2021
, “
Design and Performance Analysis of a Novel Closed-Chain Elastic-Bionic Leg With One Actuated Degree of Freedom
,”
Mech. Mach. Theory
,
165
, p.
104444
.
14.
Shi
,
Z.
,
Wang
,
W.
,
Liu
,
Y.
,
Hu
,
Y.
,
Ju
,
X.
, and
Zhang
,
P.
,
2023
, “
Design and Experimental Research on the Novel Leg Configuration of Bipedal Robot
,”
J. Mech. Eng.
,
59
(
1
), pp.
103
112
.
15.
Nguyen
,
T.-S.
,
Harton
,
D.
,
Campeau-Lecours
,
A.
, and
Gosselin
,
C.
,
2021
, “
Motion Control Algorithms Based on the Dynamic Modelling of Kinematically Redundant Hybrid Parallel Robots
,”
Mechatronics
,
76
, p.
102555
.
16.
Xu
,
L.
,
Chai
,
X.
, and
Ding
,
Y.
,
2024
, “
Design and Analysis of a Reconfigurable Hybrid Robot for Machining of Large Workpieces
,”
ASME J. Mech. Rob.
,
16
(
5
), p.
051001
.
17.
Wei
,
C.
,
Wu
,
J.
,
Sun
,
J.
,
Sun
,
H.
,
Yao
,
Y.-A.
, and
Ruan
,
Q.
,
2022
, “
Reconfigurable Design of a Passive Locomotion Closed-Chain Multi-legged Platform for Terrain Adaptability
,”
Mech. Mach. Theory
,
174
, p.
104936
.
18.
Zhu
,
M.
,
Briot
,
S.
, and
Chriette
,
A.
,
2022
, “
Sensor-Based Design of a Delta Parallel Robot
,”
Mechatronics
,
87
, p.
102893
.
19.
Grance Ebert. Animated by Wind
,
2022
, “Theo Jansen's ‘Strandbeest’ Sculptures Have Evolved Into Flying Creatures.” https://artmerit.com/article/animated-by-wind-theo-jansens-strandbeest-sculptures-have-evolved-into-flying-creatures/.
20.
Zang
,
H.
, and
Shen
,
L.
,
2017
, “
Research and Optimization Design of Mechanism for Theo Jansen Bionic Leg
,”
J. Mech. Eng.
,
53
(
15
), pp.
101
109
.
21.
Nansai
,
S.
,
Rojas
,
N.
,
Elara
,
M. R.
,
Sosa
,
R.
, and
Iwase
,
M.
,
2015
, “
On a Jansen Leg With Multiple Gait Patterns for Reconfigurable Walking Platforms
,”
Adv. Mech. Eng.
,
7
(
3
), p.
1687814015573824
.
22.
Nansai
,
S.
,
Mohan
,
R. E.
,
Tan
,
N.
,
Rojas
,
N.
, and
Iwase
,
M.
,
2015
, “
Dynamic Modeling and Nonlinear Position Control of a Quadruped Robot With Theo Jansen Linkage Mechanisms and a Single Actuator
,”
J. Robot.
,
2015
, p.
315673
.
23.
Khodaverdian
,
M.
, and
Malekzadeh
,
M.
,
2023
, “
Fault-Tolerant Model Predictive Sliding Mode Control With Fixed-Time Attitude Stabilization and Vibration Suppression of Flexible Spacecraft
,”
Aerosp. Sci. Technol.
,
139
, p.
108381
.
24.
Yu
,
F.
,
Zhu
,
Q.
, and
Chen
,
Y.
,
2023
, “
Adaptive Fractional-Order Fast-Terminal-Type Sliding Mode Control for Underwater Vehicle-Manipulator Systems
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
064501
.
25.
Zhang
,
Y.
,
He
,
L.
,
Yan
,
B.
,
Chen
,
J.
, and
Wu
,
C.
,
2023
, “
Hierarchical Sliding Mode Control for the Trajectory Tracking of a Tendon-Driven Manipulator
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
061014
.
26.
Kumar
,
R.
,
Mukherjee
,
J.
, and
Mukherjee
,
S.
,
2021
, “
A Sliding-Mode Control Algorithm to Enhance In-Hand Motion Capabilities
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031013
.
27.
Han
,
J.
,
Shan
,
X.
,
Liu
,
H.
,
Xiao
,
J.
, and
Huang
,
T.
,
2023
, “
Fuzzy Gain Scheduling PID Control of a Hybrid Robot Based on Dynamic Characteristics
,”
Mech. Mach. Theory
,
184
, p.
105283
.
28.
Pang
,
H.
,
Liu
,
F.
, and
Xu
,
Z.
,
2018
, “
Variable Universe Fuzzy Control for Vehicle Semi-Active Suspension System With MR Damper Combining Fuzzy Neural Network and Particle Swarm Optimization
,”
Neurocomputing
,
306
, pp.
130
140
.
29.
Weiwei
,
S.
,
2008
,
Research on VLSI Implementation of the Variable Universe Adaptive Fuzzy Logic Controller
,
Tsinghua University
,
Beijing, China
.
30.
Khansari-Zadeh
,
S. M.
, and
Billard
,
A.
,
2014
, “
Learning Control Lyapunov Function to Ensure Stability of Dynamical System-Based Robot Reaching Motions
,”
Robot. Auton. Syst.
,
62
, pp.
752
765
.
31.
Dutta
,
A.
,
Salunkhe
,
D. H.
,
Kumar
,
S.
,
Udai
,
A. D.
, and
Shah
,
S. V.
,
2019
, “
Sensorless Full Body Active Compliance in a 6 DOF Parallel Manipulator
,”
Robot. Comput. Integr. Manuf.
,
59
, pp.
278
290
.
32.
Wang
,
M.
,
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2015
, “
Compliance Analysis of a 3-SPR Parallel Mechanism With Consideration of Gravity
,”
Mech. Mach. Theory
,
84
, pp.
99
112
.
You do not currently have access to this content.