Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Understanding legged locomotion in various environments is valuable for many fields, including robotics, biomechanics, rehabilitation, and motor control. Specifically, investigating legged locomotion in compliant terrains has recently been gaining interest for the robust control of legged robots over natural environments. At the same time, the importance of ground compliance has also been highlighted in poststroke gait rehabilitation. Currently, there are not many ways to investigate walking surfaces of varying stiffness. This article introduces the variable stiffness treadmill (VST) 2, an improvement of the first version of the VST, which was the first treadmill able to vary belt stiffness. In contrast to the VST 1, the device presented in this paper (VST 2) can reduce the stiffness of both belts independently, by generating vertical deflection instead of angular, while increasing the walking surface area from 0.20m2 to 0.74m2. In addition, both treadmill belts are now driven independently, while high-spatial-resolution force sensors under each belt allow for measurement of ground reaction forces and center of pressure. Through validation experiments, the VST 2 displays high accuracy and precision. The VST 2 has a stiffness range of 13kN/m to 1.5MN/m, error of less than 1%, and standard deviations of less than 2.2kN/m, demonstrating its ability to simulate low-stiffness environments reliably. The VST 2 constitutes a drastic improvement of the VST platform, a one-of-its-kind system that can improve our understanding of human and robotic gait while creating new avenues of research on biped locomotion, athletic training, and rehabilitation of gait after injury or disease.

References

1.
Kowalsky
,
D. B.
,
Rebula
,
J. R.
,
Ojeda
,
L. V.
,
Adamczyk
,
P. G.
, and
Kuo
,
A. D.
,
2021
, “
Human Walking in the Real World: Interactions Between Terrain Type, Gait Parameters, and Energy Expenditure
,”
PLoS One
,
16
(
1
), p.
e0228682
.
2.
Reisman
,
D. S.
,
Block
,
H. J.
, and
Bastian
,
A. J.
,
2005
, “
Interlimb Coordination During Locomotion: What Can Be Adapted and Stored?
,”
J. Neurophysiol.
,
94
(
4
), pp.
2403
2415
.
3.
Sousa
,
A. S. P.
, and
Tavares
,
J. M. R. S.
,
2015
, “
Interlimb Coordination During Step-to-Step Transition and Gait Performance
,”
J. Motor Behav.
,
47
(
6
), pp.
563
574
.
4.
Skidmore
,
J.
, and
Artemiadis
,
P.
,
2016
, “
Unilateral Walking Surface Stiffness Perturbations Evoke Brain Responses: Toward Bilaterally Informed Robot-Assisted Gait Rehabilitation
,”
Proceedings - IEEE International Conference on Robotics and Automation
,
Stockholm, Sweden
,
May 16–21
,
IEEE
, pp.
3698
3703
.
5.
Chambers
,
V.
, and
Artemiadis
,
P.
,
2023
, “
Using Robot-Assisted Stiffness Perturbations to Evoke Aftereffects Useful to Post-stroke Gait Rehabilitation
,”
Front. Rob. AI
,
9
, p.
1073746
.
6.
Mesesan
,
G.
,
Englsberger
,
J.
,
Garofalo
,
G.
,
Ott
,
C.
, and
Albu-Schäffer
,
A.
,
2019
, “
Dynamic Walking on Compliant and Uneven Terrain Using DCM and Passivity-Based Whole-Body Control
,”
2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)
,
Toronto, Canada
,
Oct. 15–17
, pp.
25
32
.
7.
Hobbs
,
B.
, and
Artemiadis
,
P.
,
2020
, “
A Review of Robot-Assisted Lower-Limb Stroke Therapy: Unexplored Paths and Future Directions in Gait Rehabilitation
,”
Front. Neurorob.
,
14
, p.
19
.
8.
Feigin
,
V. L.
,
Brainin
,
M.
,
Norrving
,
B.
,
Martins
,
S.
,
Sacco
,
R. L.
,
Hacke
,
W.
,
Fisher
,
M.
,
Pandian
,
J.
, and
Lindsay
,
P.
,
2022
, “
World Stroke Organization (WSO): Global Stroke Fact Sheet 2022
,”
Int. J. Stroke
,
17
(
1
), pp.
18
29
.
9.
Duncan
,
P. W.
,
Zorowitz
,
R.
,
Bates
,
B.
,
Choi
,
J. Y.
,
Glasberg
,
J. J.
,
Graham
,
G. D.
,
Katz
,
R. C.
,
Lamberty
,
K.
, and
Reker
,
D.
,
2005
, “
Management of Adult Stroke Rehabilitation Care
,”
Stroke
,
36
(
9
), pp.
e100
e143
.
10.
Su
,
Y. R. S.
,
Veeravagu
,
A.
, and
Grant
,
G.
,
2016
, “Neuroplasticity After Traumatic Brain Injury,”
Translational Research in Traumatic Brain Injury
,
D.
Laskowitz
and
G.
Grant
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
163
178
.
11.
Daly
,
J. J.
, and
Ruff
,
R. L.
,
2007
, “
Construction of Efficacious Gait and Upper Limb Functional Interventions Based on Brain Plasticity Evidence and Model-Based Measures for Stroke Patients
,”
Sci. World J.
,
7
, pp.
2031
2045
.
12.
Sunderland
,
A.
,
Tinson
,
D. J.
,
Bradley
,
E. L.
,
Fletcher
,
D.
,
Langton Hewer
,
R.
, and
Wade
,
D. T.
,
1992
, “
Enhanced Physical Therapy Improves Recovery of Arm Function After Stroke. A Randomised Controlled Trial
,”
J. Neurol., Neurosur. Psych.
,
55
(
7
), p.
530 LP
.
13.
Cavanagh
,
P. R.
, and
Lafortune
,
M. A.
,
1980
, “
Ground Reaction Forces in Distance Running
,”
J. Biomech.
,
13
(
5
), pp.
397
406
.
14.
Hreljac
,
A.
,
2004
, “
Impact and Overuse Injuries in Runners.
,”
Med. Sci. Spor. Exerc.
,
36
(
5
), pp.
845
849
.
15.
Alnahdi
,
A. H.
,
Zeni
,
J. A.
, and
Snyder-Mackler
,
L.
,
2012
, “
Muscle Impairments in Patients With Knee Osteoarthritis
,”
Sports Health
,
4
(
4
), pp.
284
292
.
16.
Tyler
,
T. F.
,
Fukunaga
,
T.
, and
Gellert
,
J.
,
2014
, “
Rehabilitation of Soft Tissue Injuries of the Hip and Pelvis
,”
Int. J. Sports Phys. Therapy
,
9
(
6
), p.
785
.
17.
Jonathan
,
C.
,
2022
, “Knee Rehab Exercises,” https://www.verywellhealth.com/knee-rehab-exercises-2549750, Accessed August 14, 2024.
18.
Xie
,
K.
,
Lyu
,
Y.
,
Zhang
,
X.
, and
Song
,
R.
,
2021
, “
How Compliance of Surfaces Affects Ankle Moment and Stiffness Regulation During Walking
,”
Front. Bioeng. Biotechnol.
,
9
, pp.
1
10
.
19.
Ferris
,
D. P.
,
Liang
,
K.
, and
Farley
,
C. T.
,
1999
, “
Runners Adjust Leg Stiffness for Their First Step on a New Running Surface
,”
J. Biomech.
,
32
(
8
), pp.
787
794
.
20.
Farley
,
C. T.
,
Houdijk
,
H. H.
,
Van Strien
,
C.
, and
Louie
,
M.
,
1998
, “
Mechanism of Leg Stiffness Adjustment for Hopping on Surfaces of Different Stiffnesses
,”
J. Appl. Physiol.
,
85
(
3
), pp.
1044
1055
.
21.
Nalam
,
V.
,
Bliss
,
C.
,
Russell
,
J. B.
,
Save
,
O.
, and
Lee
,
H.
,
2022
, “
Understanding Modulation of Ankle Stiffness During Stance Phase of Walking on Different Ground Surfaces
,”
IEEE Rob. Autom. Lett.
,
7
(
4
), pp.
9294
9301
.
22.
Chang
,
M. D.
,
Sejdić
,
E.
,
Wright
,
V.
, and
Chau
,
T.
,
2010
, “
Measures of Dynamic Stability: Detecting Differences Between Walking Overground and on a Compliant Surface
,”
Human Move. Sci.
,
29
(
6
), pp.
977
986
.
23.
Drolet
,
M.
,
Yumbla
,
E. Q.
,
Hobbs
,
B.
, and
Artemiadis
,
P.
,
2020
, “
On the Effects of Visual Anticipation of Floor Compliance Changes on Human Gait: Towards Model-Based Robot-Assisted Rehabilitation
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
,
IEEE, Institute of Electrical and Electronics Engineers Inc
, pp.
9072
9078
.
24.
Angelidou
,
C.
, and
Artemiadis
,
P.
,
2023
, “
On Predicting Transitions to Compliant Surfaces in Human Gait via Neural and Kinematic Signals
,”
IEEE. Trans. Neural. Syst. Rehabil. Eng.
,
31
, pp.
2214
2223
.
25.
Hobbs
,
B.
, and
Artemiadis
,
P.
,
2022
, “
A Systematic Method for Outlier Detection in Human Gait Data
,”
2022 International Conference on Rehabilitation Robotics (ICORR)
,
Rotterdam, Netherlands
,
July 25–29
,
IEEE
, pp.
1
6
.
26.
Kerdok
,
A. E.
,
Biewener
,
A. A.
,
McMahon
,
T. A.
,
Weyand
,
P. G.
, and
Herr
,
H. M.
,
2002
, “
Energetics and Mechanics of Human Running on Surfaces of Different Stiffnesses
,”
J. Appl. Physiol.
,
92
(
2
), pp.
469
478
.
27.
Bellicoso
,
C. D.
,
Bjelonic
,
M.
,
Wellhausen
,
L.
,
Holtmann
,
K.
,
Günther
,
F.
,
Tranzatto
,
M.
,
Fankhauser
,
P.
, and
Hutter
,
M.
,
2018
, “
Advances in Real-World Applications for Legged Robots
,”
J. Field Rob.
,
35
(
8
), pp.
1311
1326
.
28.
Karakasis
,
C.
,
Poulakakis
,
I.
, and
Artemiadis
,
P.
,
2022
, “
Robust Dynamic Walking for a 3d Dual-Slip Model Under One-Step Unilateral Stiffness Perturbations: Towards Bipedal Locomotion Over Compliant Terrain
,”
2022 30th Mediterranean Conference on Control and Automation (MED)
,
Athens, Greece
,
June 28–July
, pp.
969
975
.
29.
Bosworth
,
W.
,
Whitney
,
J.
,
Kim
,
S.
, and
Hogan
,
N.
,
2016
, “
Robot Locomotion on Hard and Soft Ground: Measuring Stability and Ground Properties In-Situ
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
Stockholm, Sweden
,
May 16–21
,,
Institute of Electrical and Electronics Engineers Inc.
, pp.
3582
3589
.
30.
Fahmi
,
S.
,
Focchi
,
M.
,
Radulescu
,
A.
,
Fink
,
G.
,
Barasuol
,
V.
, and
Semini
,
C.
,
2020
, “
Stance: Locomotion Adaptation Over Soft Terrain
,”
IEEE Trans. Rob.
,
36
(
2
), pp.
443
457
.
31.
Barkan
,
A.
,
Skidmore
,
J.
, and
Artemiadis
,
P.
,
2014
, “
Variable Stiffness Treadmill (VST): A Novel Tool for the Investigation of Gait
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
Hong Kong, China
,
May 31–June 7
, Vol.
9
, pp.
2838
2843
.
32.
Skidmore
,
J.
,
Barkan
,
A.
, and
Artemiadis
,
P.
,
2015
, “
Variable Stiffness Treadmill (VST): System Development, Characterization, and Preliminary Experiments
,”
IEEE/ASME Trans. Mechatron.
,
20
(
4
), pp.
1717
1724
.
33.
Skidmore
,
J.
, and
Artemiadis
,
P.
,
2015
, “
Leg Muscle Activation Evoked by Floor Stiffness Perturbations: A Novel Approach to Robot-Assisted Gait Rehabilitation
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
6463
6468
.
34.
Skidmore
,
J.
, and
Artemiadis
,
P.
,
2016
, “
On the Effect of Walking Surface Stiffness on Inter-limb Coordination in Human Walking: Toward Bilaterally Informed Robotic Gait Rehabilitation
,”
J. NeuroEng. Rehabil.
,
13
(
1
), p.
32
.
35.
Skidmore
,
J.
, and
Artemiadis
,
P.
,
2019
, “
A Comprehensive Analysis of Sensorimotor Mechanisms of Inter-Leg Coordination in Gait Using the Variable Stiffness Treadmill: Physiological Insights for Improved Robot-Assisted Gait Therapy
,”
2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)
,
Toronto, Canada
,
June 24–28
, pp.
28
33
.
36.
Skidmore
,
J.
, and
Artemiadis
,
P.
,
2016
, “
Unilateral Floor Stiffness Perturbations Systematically Evoke Contralateral Leg Muscle Responses: A New Approach to Robot-Assisted Gait Therapy
,”
IEEE. Trans. Neural. Syst. Rehabil. Eng.
,
24
(
4
), pp.
467
474
.
37.
Chambers
,
V.
, and
Artemiadis
,
P.
,
2022
, “
Repeated Robot-Assisted Unilateral Stiffness Perturbations Result in Significant Aftereffects Relevant to Post-Stroke Gait Rehabilitation
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
May 23–27
,
IEEE
, pp.
5426
5433
.
38.
Hernandez
,
E.
,
Warhmund
,
C.
,
Lamoureux
,
K.
,
Lee
,
E.
,
Sanchez
,
I.
,
Matthews
,
W.
, and
Jafari
,
A.
,
2018
, “
A Novel Treadmill That Can Bilaterally Adjust the Vertical Surface Stiffness
,”
IEEE/ASME Trans. Mechatron.
,
23
(
5
), pp.
2338
2346
.
39.
MP
,
M.
,
1970
, “
Walking Patterns of Normal Woman
,”
Arch. Phys. Med. Rehabil.
,
51
, pp.
637
650
.
40.
Murray
,
M. P.
,
Drought
,
A. B.
, and
Kory
,
R. C.
,
1964
, “
Walking Patterns of Normal Men
,”
JBJS
,
46
(
2
), pp.
335
360
.
41.
Jafari
,
A.
, and
Ebrahimi
,
N.
,
2021
, “Chapter 7—TwAS: Treadmill With Adjustable Surface Stiffness,”
Soft Robotics in Rehabilitation
,
A.
Jafari
and
N.
Ebrahimi
, eds.,
Academic Press
,
Cambridge, MA
, pp.
199
240
.
42.
Reisman
,
D. S.
,
Wityk
,
R.
,
Silver
,
K.
, and
Bastian
,
A. J.
,
2007
, “
Locomotor Adaptation on a Split-Belt Treadmill Can Improve Walking Symmetry Post-stroke
,”
Brain: A J. Neurol.
,
130
(
Pt 7
), pp.
1861
1872
.
43.
Reisman
,
D. S.
,
McLean
,
H.
,
Keller
,
J.
,
Danks
,
K. A.
, and
Bastian
,
A. J.
,
2013
, “
Repeated Split-Belt Treadmill Training Improves Poststroke Step Length Asymmetry
,”
Neurorehabil. Neural Repair
,
27
(
5
), pp.
460
468
.
44.
Huynh
,
K. V.
,
Sarmento
,
C. H.
,
Roemmich
,
R. T.
,
Stegemöller
,
E. L.
, and
Hass
,
C. J.
,
2014
, “
Comparing Aftereffects After Split-belt Treadmill Walking and Unilateral Stepping
,”
Med. Sci. Sports. Exercise.
,
46
(
7
), pp.
1392
1399
.
45.
Lee
,
Y.-J.
, and
Liang
,
J. N.
,
2020
, “
Characterizing Intersection Variability of Butterfly Diagram in Post-stroke Gait Using Kernel Density Estimation
,”
Gait Posture
,
76
, pp.
157
161
.
46.
Bosworth
,
W.
,
Whitney
,
J.
,
Kim
,
S.
, and
Hogan
,
N.
,
2016
, “
Robot Locomotion on Hard and Soft Ground: Measuring Stability and Ground Properties In-Situ
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
3582
3589
.
47.
Reisman
,
D. S.
,
Wityk
,
R.
,
Silver
,
K.
, and
Bastian
,
A. J.
,
2009
, “
Split-Belt Treadmill Adaptation Transfers to Overground Walking in Persons Poststroke
,”
Neurorehabil. Neural Repair
,
23
(
7
), pp.
735
744
.
48.
Miéville
,
C.
,
Lauzière
,
S.
,
Betschart
,
M.
,
Nadeau
,
S.
, and
Duclos
,
C.
,
2018
, “
More Symmetrical Gait After Split-Belt Treadmill Walking Does Not Modify Dynamic and Postural Balance in Individuals Post-stroke
,”
J. Electromyogr. Kinesiol.
,
41
, pp.
41
49
.
49.
Tsagarakis
,
N. G.
,
Sardellitti
,
I.
, and
Caldwell
,
D. G.
,
2011
, “
A New Variable Stiffness Actuator (CompAct-VSA): Design and Modelling
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
,
IEEE
, pp.
378
383
.
50.
Zhou
,
X.
,
Jun
,
S.-k.
, and
Krovi
,
V.
,
2015
, “
A Cable Based Active Variable Stiffness Module With Decoupled Tension
,”
J. Mech. Rob.
,
7
(
1
), p.
011005
.
51.
Jafari
,
A.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2011
, “
A Novel Intrinsically Energy Efficient Actuator With Adjustable Stiffness (AwAS)
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
355
365
.
52.
Sun
,
J.
,
Guo
,
Z.
,
Sun
,
D.
,
He
,
S.
, and
Xiao
,
X.
,
2018
, “
Design, Modeling and Control of a Novel Compact, Energy-Efficient, and Rotational Serial Variable Stiffness Actuator (SVSA-II)
,”
Mech. Mach. Theory.
,
130
, pp.
123
136
.
53.
Sun
,
J.
,
Guo
,
Z.
,
Zhang
,
Y.
,
Xiao
,
X.
, and
Tan
,
J.
,
2018
, “
A Novel Design of Serial Variable Stiffness Actuator Based on an Archimedean Spiral Relocation Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
23
(
5
), pp.
2121
2131
.
You do not currently have access to this content.