Abstract

Origami-inspired structures have been widely used in aerospace and robotics for three-dimensional (3D) symmetrical configurations using crease-symmetrical origami basic patterns. These patterns offer advantages in repeatable and systematic modeling and mass production. However, few studies have focused on 3D nonsymmetrical structures using symmetrical origami basic patterns due to their structure complexity, limiting their application. Therefore, we aim to analyze the folding behavior in 3D nonsymmetrical structures using a 6-crease symmetry origami base pattern. To achieve this goal, we first focus on behavior in a two-dimensional (2D) plane. This article presents a scheme for the behavior of origami units with an optimal curve-fitting algorithm. The curve can be any 2D space curve. The fitting curve, constructed by numerical analysis and an optimal approaching scheme, can satisfy error requirements and retain foldable origami unit features. The article verifies the feasibility of the curve-fitting scheme by presenting two curve examples, including a quadratic curve and a sin wave function. The results show that the fitting error is reduced by 99% when no boundary conditions are applied. This research provides valuable insights into understanding origami unit kinematic optimization through forward and inverse kinematics. It offers potential applications in the engineering design of foldable structures and precision origami-inspired mechanism, thereby opening avenues for further exploration of complex origami structures and their applications in emerging technologies.

References

1.
Ynchausti
,
C.
,
Roubicek
,
C.
,
Erickson
,
J.
,
Sargent
,
B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2022
, “
Hexagonal Twist Origami Pattern for Deployable Space Arrays
,”
ASME Open J. Eng.
,
1
(
1
), p.
011041
.
2.
Bolanos
,
D.
,
Varela
,
K.
,
Sargent
,
B.
,
Stephen
,
M. A.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2023
, “
Selecting and Optimizing Origami Flasher Pattern Configurations for Finite-Thickness Deployable Space Arrays
,”
ASME J. Mech. Des.
,
145
(
2
), p.
023301
.
3.
Roubicek
,
C. L.
,
Gao
,
G.
,
Li
,
H.
,
Stephen
,
M.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2023
, “
Effects of Panel Misalignment in a Deployable Origami-Based Optical Array
,”
ASME Open J. Eng.
,
2
(
1
), p.
021003
.
4.
Jia
,
G.
,
Huang
,
H.
,
Guo
,
H.
,
Li
,
B.
, and
Dai
,
J. S.
,
2021
, “
Design of Transformable Hinged Ori-Block Dissected From Cylinders and Cones
,”
ASME J. Mech. Des.
,
143
(
9
), p.
094501
.
5.
Liu
,
C.
,
Wohlever
,
S. J.
,
Ou
,
M. B.
,
Padir
,
T.
, and
Felton
,
S. M.
,
2022
, “
Shake and Take: Fast Transformation of an Origami Gripper
,”
IEEE Trans. Rob.
,
38
(
1
), pp.
491
506
.
6.
Banerjee
,
H.
,
Pusalkar
,
N.
, and
Ren
,
H.
,
2018
, “
Single-Motor Controlled Tendon-Driven Peristaltic Soft Origami Robot
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
064501
.
7.
Swaminathan
,
R.
,
Cai
,
C. J.
,
Yuan
,
S.
, and
Ren
,
H.
,
2021
, “
Multiphysics Simulation of Magnetically Actuated Robotic Origami Worms
,”
IEEE Robot. Autom. Lett.
,
6
(
3
), pp.
4923
4930
.
8.
Yu
,
H.
,
Guo
,
Z.
, and
Wang
,
J.
,
2018
, “
A Method of Calculating the Degree of Freedom of Foldable Plate Rigid Origami With Adjacency Matrix
,”
Adv. Mech. Eng.
,
10
(
6
), p.
1687814018779696
.
9.
Guan
,
Y.
,
Zhuang
,
Z.
,
Zhang
,
Z.
, and
Dai
,
J. S.
,
2023
, “
Design, Analysis, and Experiment of the Origami Robot Based on Spherical-Linkage Parallel Mechanism
,”
ASME J. Mech. Des.
,
145
(
8
), p.
081701
.
10.
Lang
,
R. J.
,
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
A Review of Thickness-Accommodation Techniques in Origami-Inspired Engineering
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010805
.
11.
Li
,
J.
,
Yu
,
Z.
,
Zhu
,
Z.
, and
Deng
,
Z.
,
2023
, “
A Zigzag-Based Thickness-Accommodating Foldable Prismatic Structure With a Single-Degree-of-Freedom
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
061005
.
12.
Wu
,
X.
,
Yang
,
C.
,
Li
,
J.
,
Zhao
,
Q.
,
Wu
,
W.
,
Zhu
,
Y.
, and
Zhang
,
F.
,
2022
, “
Rigid-Foldable Mechanism Inspired by Origami Twisted Tower
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
054503
.
13.
Bernardes
,
E.
, and
Viollet
,
S.
,
2022
, “
Design of an Origami Bendy Straw for Robotic Multistable Structures
,”
ASME J. Mech. Des.
,
144
(
3
), p.
033301
.
14.
Luo
,
M.
,
Yan
,
R.
,
Wan
,
Z.
,
Qin
,
Y.
,
Santoso
,
J.
,
Skorina
,
E. H.
, and
Onal
,
C. D.
,
2018
, “
OriSnake: Design, Fabrication, and Experimental Analysis of a 3-D Origami Snake Robot
,”
IEEE Robot. Autom. Lett.
,
3
(
3
), pp.
1993
1999
.
15.
Fuchi
,
K.
,
Sessions
,
D.
,
Gillman
,
A.
,
Meenakshisundaram
,
V.
,
Cook
,
A.
,
Huff
,
G. H.
, and
Buskohl
,
P. R.
,
2021
, “
Design Optimization of Origami-Tunable Frequency Selective Surfaces
,”
IEEE Open J. Antennas Propag.
,
2
(
1
), pp.
897
910
.
16.
Zimmermann
,
L.
,
Shea
,
K.
, and
Stanković
,
T.
,
2022
, “
A Computational Design Synthesis Method for the Generation of Rigid Origami Crease Patterns
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031014
.
17.
Ye
,
Q.
,
Gu
,
X. D.
, and
Chen
,
S.
,
2022
, “
Variational Level Set Method for Topology Optimization of Origami Fold Patterns
,”
ASME J. Mech. Des.
,
144
(
8
), p.
081702
.
18.
Chen
,
Y.
,
Shi
,
J.
,
He
,
R.
,
Lu
,
C.
,
Shi
,
P.
,
Feng
,
J.
, and
Sareh
,
P.
,
2023
, “
A Unified Inverse Design and Optimization Workflow for the Miura-ORing Metastructure
,”
ASME J. Mech. Des.
,
145
(
9
), p.
091704
.
19.
Ma
,
J.
,
Feng
,
H.
,
Chen
,
Y.
,
Hou
,
D.
, and
You
,
Z.
,
2020
, “
Folding of Tubular Waterbomb
,”
Research
,
2020
(
1
), p.
1735081
.
You do not currently have access to this content.