Abstract

A bimanual parallel dexterous hand with cooperative manipulation capability is proposed to solve the problem that one hand cannot achieve continuous in-hand manipulation. The bimanual parallel dexterous hand is composed of two parts: the inner ring fingers and the outer ring fingers. It is possible not only to perform a 6-degree-of-freedom manipulation with the inner ring fingers or six fingers but also to cooperate with the inner ring fingers and the outer ring fingers to achieve in-hand manipulation. Firstly, the inverse kinematics of the dexterous hand is analyzed and the velocity Jacobian matrices are established. Then, the workspace, dexterity, and stiffness of the dexterous hand during the inner ring finger manipulation and the six finger manipulation are analyzed and compared. Finally, a prototype of the dexterous hand is constructed and its performance is tested. It proves that continuous manipulation and assembly tasks can be achieved through the cooperation of the bimanual dexterous hand. At the same time, the workspaces of the dexterous hand manipulating objects of six different shapes are measured to demonstrate the in-hand manipulation capability. The proposed bimanual parallel dexterous hand provides a feasible reference scheme for the development and application of cooperative manipulation of dexterous hands with multiple fingers.

References

1.
Okada
,
T.
,
1979
, “
Object-Handling System for Manual Industry
,”
IEEE Trans. Syst. Man Cybern.
,
9
(
2
), pp.
79
89
.
2.
Mouri
,
T.
,
Kawasaki
,
H.
,
Yoshikawa
,
K.
,
Takai
,
J.
, and
Ito
,
S.
,
2002
, “
Anthropomorphic Robot Hand: Gifu Hand III
,”
Proceedings of the International Conference on ICCAS
,
Jeonbuk, South Korea
,
Oct. 16–19
, pp.
1288
1293
.
3.
Butterfaß
,
J.
,
Grebenstein
,
M.
,
Liu
,
H.
, and
Hirzinger
,
G.
,
2001
, “
Dlr-Hand II Next Generation of a Dextrous Robot Hand
,”
Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164)
,
Seoul, South Korea
,
May 21–26
, pp.
109
114
.
4.
Lovchik
,
C. S.
, and
Diftler
,
M. A.
,
1999
, “
The Robonaut Hand: A Dexterous Robot Hand for Space
,”
Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C)
,
Detroit, MI
,
May 10–15
, pp.
907
912
.
5.
Schulz
,
S.
,
Pylatiuk
,
C.
, and
Bretthauer
,
G.
,
2001
, “
A New Ultralight Anthropomorphic Hand
,”
Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164)
,
Seoul, South Korea
,
May 21–26
, pp.
2437
2441
.
6.
Fukaya
,
N.
,
Toyama
,
S.
,
Asfour
,
T.
, and
Dillmann
,
R.
,
2000
, “
Design of the TUAT/Karlsruhe Humanoid Hand
,”
Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No. 00CH37113)
,
Takamatsu, Japan
,
Oct. 31–Nov. 5
, pp.
1754
1759
.
7.
Iwata
,
H.
, and
Sugano
,
S.
,
2009
, “
Design of Anthropomorphic Dexterous Hand with Passive Joints and Sensitive Soft Skins
,”
2009 IEEE/SICE International Symposium on System Integration (SII)
,
Tokyo, Japan
,
Jan. 29
, pp.
129
134
.
8.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2007
, “
The SDM Hand as a Prosthetic Terminal Device: A Feasibility Study
,”
2007 IEEE 10th International Conference on Rehabilitation Robotics
,
Noordwijk, Netherlands
,
June 13–15
, pp.
978
983
.
9.
Ganguly
,
K.
,
Sadrfaridpour
,
B.
,
Kidambi
,
K. B.
,
Fermller
,
C.
, and
Aloimonos
,
Y.
,
2020
, “Grasping in the Dark: Compliant Grasping Using Shadow Dexterous Hand and Biotac Tactile Sensor”. arXiv e-prints, pages arXiv–2011.
10.
Jacobsen
,
S. C.
,
Wood
,
J. E.
,
Knutti
,
D. F.
, and
Biggers
,
K. B.
,
1984
, “
The UTAH/MIT Dexterous Hand: Work in Progress
,”
Int. J. Rob. Res.
,
3
(
4
), pp.
21
50
.
11.
Dong
,
H.
,
Asadi
,
E.
,
Qiu
,
C.
,
Dai
,
J.
, and
Chen
,
I. M.
,
2018
, “
Grasp Analysis and Optimal Design of Robotic Fingertip for Two Tendon-Driven Fingers
,”
Mech. Mach. Theory
,
130
(
25
), pp.
447
462
.
12.
Dong
,
H.
,
Asadi
,
E.
,
Qiu
,
C.
,
Dai
,
J.
, and
Chen
,
I. M.
,
2018
, “
Geometric Design Optimization of an Under-Actuated Tendon-Driven Robotic Gripper
,”
Rob. Comput. Integr. Manuf.
,
50
(
7
), pp.
80
89
.
13.
Lotti
,
F.
,
Tiezzi
,
P.
,
Vassura
,
G.
,
Biagiotti
,
L.
, and
Melchiorri
,
C.
,
2004
, “
UBH 3: an Anthropomorphic Hand With Simplified Endo-Skeletal Structure and Soft Continuous Fingerpads
,”
IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004
,
New Orleans, LA
,
Apr. 26–May 1
, pp.
4736
4741
.
14.
Ma
,
S.
,
Chen
,
M.
,
Dong
,
Y.
,
Yuan
,
X.
, and
Skelton
,
R. E.
,
2024
, “
Statics and Dynamics of Pulley-Driven Tensegrity Structures With Sliding Cable Modeling
,”
Appl. Math. Model.
,
130
(
21
), pp.
378
400
.
15.
Chen
,
M.
,
Fraddosio
,
A.
,
Micheletti
,
A.
,
Pavone
,
G.
,
Piccioni
,
M. D.
, and
Skelton
,
R. E.
,
2023
, “
Analysis of Clustered Cable-Actuation Strategies of V-Expander Tensegrity Structures
,”
Eng. Struct.
,
296
(
7
), p.
116868
.
16.
Chen
,
M.
,
Fraddosio
,
A.
,
Micheletti
,
A.
,
Pavone
,
G.
,
Piccioni
,
M. D.
, and
Skelton
,
R. E.
,
2023
, “
Energy-Efficient Cable-Actuation Strategies of the V-Expander Tensegrity Structure Subjected to Five Shape Changes
,”
Mech. Res. Commun.
,
127
(
7
), p.
104026
.
17.
Min
,
S.
, and
Yi
,
S.
,
2021
, “
Development of Cable-Driven Anthropomorphic Robot Hand
,”
IEEE Robot. Autom. Lett.
,
6
(
2
), pp.
1176
1183
.
18.
Nikafrooz
,
N.
, and
Leonessa
,
A.
,
2021
, “
A Single-Actuated, Cable-Driven, and Self-Contained Robotic Hand Designed for Adaptive Grasps
,”
Robotics
,
10
(
4
), p.
109
.
19.
Chen
,
T.
,
Zhao
,
X.
,
Ma
,
G.
,
Tao
,
B.
, and
Yin
,
Z.
,
2021
, “
Design of 3D-Printed Cable Driven Humanoid Hand Based on Bidirectional Elastomeric Passive Transmission
,”
Chin. J. Mech. Eng.
,
34
(
1
), p.
76
.
20.
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2014
, “
Linkage-Based Analysis and Optimization of an Underactuated Planar Manipulator for in-Hand Manipulation
,”
ASME J. Mech. Rob.
,
6
(
1
), p.
011002
.
21.
Chen
,
W.
, and
Xiong
,
C.
,
2016
, “
On Adaptive Grasp With Underactuated Anthropomorphic Hands
,”
J. Bionic Eng.
,
13
(
1
), pp.
59
72
.
22.
Ma
,
R. R.
,
Rojas
,
N.
, and
Dollar
,
A. M.
,
2016
, “
Spherical Hands: Toward Underactuated, In-Hand Manipulation Invariant to Object Size and Grasp Location
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061021
.
23.
Laliberte
,
T.
,
Birglen
,
L.
, and
Gosselin
,
C.
,
2002
, “
Underactuation in Robotic Grasping Hands
,”
Mach. Intell. Robot. Control
,
4
(
3
), pp.
1
11
.
24.
Montambault
,
S.
, and
Gosselin
,
C. M. M.
,
2001
, “
Analysis of Underactuated Mechanical Grippers
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
367
374
.
25.
Birglen
,
L.
, and
Gosselin
,
C. M.
,
2006
, “
Geometric Design of Three-Phalanx Underactuated Fingers
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
356
364
.
26.
Rojas
,
N.
,
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2016
, “
The GR2 Gripper: An Underactuated Hand for Open-Loop In-Hand Planar Manipulation
,”
IEEE Trans. Rob.
,
32
(
3
), pp.
763
770
.
27.
McCann
,
C. M.
, and
Dollar
,
A. M.
,
2017
, “
Design of a Stewart Platform-Inspired Dexterous Hand for 6-dof Within-Hand Manipulation
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, pp.
1158
1163
.
28.
Jin
,
X.
,
Fang
,
Y.
,
Zhang
,
D.
, and
Gong
,
J.
,
2020
, “
Design of Dexterous Hands Based on Parallel Finger Structures
,”
Mech. Mach. Theory
,
152
(
1
), p.
103952
.
29.
Jin
,
X.
,
Fang
,
Y.
,
Zhang
,
D.
, and
Zhang
,
H.
,
2020
, “
Synthesis of 3-[P][S] Parallel Mechanism-Inspired Multimode Dexterous Hands with Parallel Finger Structure
,”
ASME J. Mech. Des.
,
142
(
8
), p.
083301
.
30.
Borràs
,
J.
, and
Dollar
,
A. M.
,
2015
, “
Dimensional Synthesis of Three-Fingered Robot Hands for Maximal Precision Manipulation Workspace
,”
Int. J. Rob. Res.
,
34
(
14
), pp.
1731
1746
.
31.
Borràs
,
J.
, and
Dollar
,
A. M.
,
2014
, “
Analyzing Dexterous Hands Using a Parallel Robots Framework
,”
Auton. Robots
,
36
(
1
), pp.
169
180
.
32.
Özgür
,
E.
,
Gogu
,
G.
, and
Mezouar
,
Y.
,
2017
, “
A Study on Dexterous Grasps via Parallel Manipulation Analogy
,”
J. Intell. Robot. Syst.
,
87
(
1
), pp.
3
14
.
33.
Hota
,
R. K.
, and
Kumar
,
C. S.
,
2019
, “
Effect of Hand Design and Object Size on the Workspace of Three-Fingered Hands
,”
Mech. Mach. Theory
,
133
(
14
), pp.
311
328
.
34.
Zhao
,
F.
,
Xu
,
D.
,
Jin
,
X.
,
Ding
,
X.
,
Guo
,
S.
,
Xu
,
K.
, and
Fang
,
Y.
,
2024
, “
In-Hand Manipulation Using a 3-PRS-Finger-Based Parallel Dexterous Hand With Bidirectional Pinching Capability
,”
Mech. Mach. Theory
,
192
(
17
), p.
105553
.
35.
Liu
,
J.
,
Chen
,
Y.
,
Dong
,
Z.
,
Wang
,
S.
,
Calinon
,
S.
,
Li
,
M.
, and
Chen
,
F.
,
2022
, “
Robot Cooking With Stir-Fry: Bimanual Non-Prehensile Manipulation of Semi-Fluid Objects
,”
IEEE Robot. Autom. Lett.
,
7
(
2
), pp.
5159
5166
.
36.
García
,
A.
,
Ernesto Solanes
,
J.
,
Gracia
,
L.
,
Muñoz-Benavent
,
P.
,
Girbés-Juan
,
V.
, and
Tornero
,
J.
,
2022
, “
Bimanual Robot Control for Surface Treatment Tasks
,”
Int. J. Syst. Sci.
,
53
(
1
), pp.
74
107
.
37.
Avigal
,
Y.
,
Berscheid
,
L.
,
Asfour
,
T.
,
Kröger
,
T.
, and
Goldberg
,
K.
,
2022
, “
Speedfolding: Learning Efficient Bimanual Folding of Garments
,”
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Kyoto, Japan
,
Oct. 23–27
, pp.
1
8
.
38.
He
,
C.
,
Yang
,
E.
,
Patel
,
N.
,
Ebrahimi
,
A.
,
Shahbazi
,
M.
,
Gehlbach
,
P.
, and
Iordachita
,
I.
,
2020
, “
Automatic Light Pipe Actuating System for Bimanual Robot-Assisted Retinal Surgery
,”
IEEE/ASME Trans. Mechatron.
,
25
(
6
), pp.
2846
2857
.
39.
Rakita
,
D.
,
Mutlu
,
B.
,
Gleicher
,
M.
, and
Hiatt
,
L. M.
,
2019
, “
Shared Control–Based Bimanual Robot Manipulation
,”
Sci. Robot.
,
4
(
30
), p.
eaaw0955
.
40.
Li
,
Y.
, and
Xu
,
Q.
,
2007
, “
Kinematic Analysis of a 3-PRS Parallel Manipulator
,”
Rob. Comput. Integr. Manuf.
,
23
(
4
), pp.
395
408
.
41.
Patel
,
V. V.
, and
Dollar
,
A. M.
,
2021
, “
Robot Hand Based on a Spherical Parallel Mechanism for Within-Hand Rotations About a Fixed Point
,”
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Prague, Czech Republic
,
Sept. 27–Oct. 1
, pp.
709
716
.
42.
Ye
,
W.
,
Li
,
Q. C.
, and
Chai
,
X. X.
,
2018
, “
New Family of 3-DOF UP-Equivalent Parallel Mechanisms With High Rotational Capability
,”
Chin. J. Mech. Eng.
,
31
(
1
), pp.
66
77
.
43.
Tang
,
H.
,
Zhang
,
D.
, and
Tian
,
C.
,
2022
, “
A Method for Comprehensive Performance Optimization of Four-Leg Landing Gear Based on the Virtual Equivalent Parallel Mechanism
,”
Mech. Mach. Theory
,
174
(
34
), p.
104924
.
44.
Qu
,
H.
,
Fang
,
Y.
, and
Guo
,
S.
,
2016
, “
Structural Synthesis of a Class of 3-DOF Wrist Mechanisms With Redundantly-Actuated Closed-Loop Units
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
230
(
2
), pp.
276
290
.
45.
Liu
,
X. J.
, and
Bonev
,
I. A.
,
2008
, “
Orientation Capability, Error Analysis and Dimensional Optimization of Two Articulated Tool Heads with Parallel Kinematics
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011015
.
46.
Gosselin
,
C.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.
47.
Ramana Babu
,
S.
,
Ramachandra Raju
,
V.
, and
Ramji
,
K.
,
2016
, “
Design Optimization of 3PRS Parallel Manipulator Using Global Performance Indices
,”
J. Mech. Sci. Technol.
,
30
(
9
), pp.
4325
4335
.
48.
Angeles
,
J.
,
1992
, “
The Design of Isotropic Manipulator Architectures in the Presence of Redundancies
,”
Int. J. Rob. Res.
,
11
(
3
), pp.
196
201
.
49.
Li
,
W.
, and
Angeles
,
J.
,
2017
, “
A Novel Three-Loop Parallel Robot With Full Mobility: Kinematics, Singularity, Workspace, and Dexterity Analysis
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051003
.
You do not currently have access to this content.