This paper presents a finite position synthesis (f.p.s.) procedure of a spatial single-degree-of-freedom linkage that we call origami-evolved, spherically constrained spatial revolute–revolute (RR) chain here. This terminology is chosen because the linkage may be found from the mechanism equivalent of an origami folding pattern, namely, known as the Miura-ori folding. As shown in an earlier work, the linkage under consideration has naturally given slim shape and essentially represents two specifically coupled spherical four-bar linkages, whose links may be identified with spherical and spatial RR chains. This provides a way to apply the well-developed f.p.s. theory of these linkage building blocks in order to design the origami-evolved linkage for a specific task. The result is a spherically constrained spatial RR chain, whose end effector may reach three finitely separated task positions. Due to an underspecified spherical design problem, the procedure provides several free design parameters. These can be varied in order to match further given requirements of the task. This is shown in a design example with particularly challenging space requirements, which can be fulfilled due to the naturally given slim shape.

References

1.
Sandor
,
G. N.
, and
Erdman
,
A. G.
,
1984
,
Advanced Mechanism Design: Analysis and Synthesis
, Vol.
2
,
Prentice Hall
,
Englewood Cliffs, NJ
.
2.
Suh
,
C. H.
, and
Radcliff
,
C. W.
,
1978
,
Kinematics and Mechanism Design
,
Wiley
,
New York
.
3.
Roth
,
B.
,
1967
, “
Finite-Position Theory Applied to Mechanism Synthesis
,”
ASME J. Appl. Mech.
,
34
(
3
), pp.
599
605
.
4.
Burmester
,
L.
,
1886
,
Lehrbuch der Kinematik
,
Verlag Arthur Felix
,
Leipzig, Germany
.
5.
Perez
,
A.
, and
McCarthy
,
J. M.
,
2004
, “
Dual Quaternion Synthesis of Constrained Robotic Systems
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
425
435
.
6.
Freudenstein
,
F.
, and
Sandor
,
G. N.
,
1961
, “
On the Burmester Points of a Plane
,”
ASME J. Appl. Mech.
,
28
(
1
), pp.
41
49
.
7.
Luck
,
K.
, and
Modler
,
K.-H.
,
1995
,
Getriebetechnik Analyse, Synthese, Optimierung, 2. Auflage
,
Springer
,
Berlin
.
8.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
, 2nd ed.,
Springer
,
New York
.
9.
Perez
,
A.
, and
McCarthy
,
J. M.
,
2005
, “
Geometric Design of RRP, RPR and PRR Serial Chains
,”
Mech. Mach. Theory
,
40
(
11
), pp.
1294
1311
.
10.
Lee
,
E.
, and
Mavroidis
,
C.
,
2002
, “
Solving the Geometric Design Problem of Spatial 3R Robot Manipulators Using Polynomial Homotopy Continuation
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
652
661
.
11.
Lee
,
E.
,
Mavroidis
,
C.
, and
Merlet
,
J.-P.
,
2004
, “
Five Precision Point Synthesis of Spatial RRR Manipulators Using Interval Analysis
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
842
849
.
12.
Kim
,
H. S.
, and
Tsai
,
L.-W.
,
2003
, “
Kinematic Synthesis of a Spatial 3-RPS Parallel Manipulator
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
92
97
.
13.
Wolbrecht
,
E.
,
Su
,
H.-J.
,
Perez
,
A.
, and
McCarthy
,
J. M.
,
2004
, “
Geometric Design of Symmetric 3-RRS Constrained Parallel Platforms
,”
ASME
Paper No. IMECE2004-59792.
14.
Lin
,
C.-S.
, and
Erdman
,
A. G.
,
1987
, “
Dimensional Synthesis of Planar Triads: Motion Generation With Prescribed Timing for Six Precision Positions
,”
Mech. Mach. Theory
,
22
(
5
), pp.
411
419
.
15.
Larochelle
,
P.
,
2012
, “
Synthesis of Spatial CC Dyads and 4C Mechanisms for Pick-and-Place Tasks With Guiding Locations
,”
Latest Advances in Robot Kinematics
,
J.
Lenarčič
, and
M.
Husty
, eds.,
Springer
,
Dordrecht
, pp.
437
444
.
16.
Plecnik
,
M. M.
, and
McCarthy
,
J. M.
,
2012
, “
Design of a 5-SS Spatial Steering Linkage
,”
ASME
Paper No. DETC2012-71405.
17.
Plecnik
,
M. M.
,
McCarthy
,
J. M.
, and
Wampler
,
C. W.
,
2014
, “
Kinematic Synthesis of a Watt 1 Six-Bar Linkage for Body Guidance
,”
Advances in Robot Kinematics
,
J.
Lenarcic
and
O.
Khatib
, eds.,
Springer
,
Cham, Switzerland
, pp.
317
325
.
18.
Freudenstein
,
F.
, and
Sandor
,
G. N.
,
1959
, “
Synthesis of a Path Generating Mechanism by Means of a Programmed Digital Computer
,”
ASME J. Eng. Ind.
,
81
, pp.
159
168
.
19.
McLarnan
,
C. W.
,
1963
, “
Synthesis of Six-Link Plane Mechanisms by Numerical Analysis
,”
ASME J. Manuf. Sci. Eng.
,
85
(
1
), pp.
5
10
.
20.
Krovi
,
V.
,
Ananthasuresh
,
G. K.
, and
Kumar
,
V.
,
2002
, “
Kinematic and Kinetostatic Synthesis of Planar Coupled Serial Chain Mechanisms
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
301
312
.
21.
Soh
,
G. S.
,
Ying
,
F.
, and
McCarthy
,
J. M.
,
2012
, “
Dimensional Synthesis of Planar Six-Bar Linkages by Mechanically Constrain a PRR Serial Chain
,”
ASME
Paper No. DETC2012-70721.
22.
Soh
,
G. S.
, and
Ying
,
F.
,
2013
, “
Dimensional Synthesis of Planar Eight-Bar Linkages Based on a Parallel Robot With a Prismatic Base Joint
,”
ASME
Paper No. DETC2013-12799.
23.
Sonawale
,
K. H.
,
Arredondo
,
A.
, and
McCarthy
,
J. M.
,
2013
, “
Computer Aided Design of Useful Spherical Watt 1 Six-Bar Linkages
,”
ASME
Paper No. DETC2013-13454.
24.
Pérez-Gracia
,
A.
,
2011
, “
Synthesis of Spatial RPRP Closed Linkages for a Given Screw System
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021009
.
25.
Batbold
,
B.
,
Yihun
,
Y.
,
Wolper
,
J. S.
, and
Perez-Gracia
,
A.
,
2013
, “
Exact Workspace Synthesis for RCCR Linkages
,”
Computational Kinematics
,
F.
Thomas
and
A.
Perez-Gracia
, eds.,
Springer
,
Dordrecht
, pp.
349
357
.
26.
Perez
,
A.
, and
McCarthy
,
J. M.
,
2003
, “
Dimensional Synthesis of Bennett Linkages
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
98
104
.
27.
Deng
,
Z.
,
Huang
,
H.
,
Li
,
B.
, and
Liu
,
R.
,
2011
, “
Synthesis of Deployable/Foldable Single Loop Mechanisms With Revolute Joints
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031006
.
28.
Viquerat
,
A. D.
,
Hutt
,
T.
, and
Guest
,
S. D.
,
2013
, “
A Plane Symmetric 6R Foldable Ring
,”
Mech. Mach. Theory
,
63
, pp.
73
88
.
29.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
Reconfigurable and Deployable Platonic Mechanisms With a Variable Revolute Joint
,”
Latest Advances in Robot Kinematics
,
J.
Lenarčič
and
O.
Khatib
, eds.,
Springer
,
Cham, Switzerland
, pp.
485
495
.
30.
Baker
,
J. E.
,
2013
, “
A Collapsible Network of Similar Pairs of Nested Bennett Linkages
,”
Mech. Mach. Theory
,
59
, pp.
119
124
.
31.
Tachi
,
T.
,
2009
, “
Generalization of Rigid Foldable Quadrilateral Mesh Origami
,”
International Association for Shell and Spatial Structures (IASS)
,
Valencia, Spain
, Sept. 28–Oct. 2.
32.
Miura
,
K.
, and
Natori
,
M.
,
1985
, “
2-D Array Experiment on Board a Space Flyer Unit
,”
Space Solar Power Rev.
,
5
(
4
), pp.
345
356
.
33.
Tachi
,
T.
,
2010
, “
Geometric Considerations for the Design of Rigid Origami Structures
,”
International Association for Shell and Spatial Structures (IASS)
,
Shanghai, China
, Nov. 8–12.
34.
Stavric
,
M.
, and
Wiltsche
,
A.
,
2013
, “
Investigations on Quadrilateral Patterns for Rigid Folding Structures
,”
Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013)
, Singapore, May 15–18, pp.
893
902
.
35.
Greenberg
,
H. C.
,
Gong
,
M. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2011
, “
Identifying Links Between Origami and Compliant Mechanisms
,”
Mech. Sci.
2
, pp.
217
225
.
36.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
9
), pp.
3276
3281
.
37.
Su
,
H.-J.
,
Castro
,
C. E.
,
Marras
,
A. E.
, and
Hudoba
,
M.
,
2012
, “
Design and Fabrication of DNA Origami Mechanisms and Machines
,”
Advances in Reconfigurable Mechanisms and Robots
,
I. J. S.
Dai
,
M.
Zoppi
, and
X.
Kong
, eds.,
Springer
,
London
, pp.
487
500
.
38.
You
,
Z.
, and
Kuribayashi
,
K.
,
2003
, “
A Novel Origami Stent
,”
Summer Bioengineering Conference
,
Key Biscayne, FL
, June 25–29.
39.
Lee
,
D.-Y.
,
Kim
,
J.-S.
,
Kim
,
S.-R.
,
Koh
,
J.-S.
, and
Cho
,
K.-J.
,
2013
, “
The Deformable Wheel Robot Using Magic-Ball Origami Structure
,”
ASME
Paper No. DETC2013-13016.
40.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.
41.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
2002
, “
Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent
,”
ASME J. Mech. Eng. Sci.
,
216
(
10
), pp.
959
970
.
42.
Wu
,
W.
, and
You
,
Z.
,
2010
, “
Modelling Rigid Origami With Quaternions and Dual Quaternions
,”
Proc. R. Soc. A
,
466
(2119), pp.
2155
2174
.
43.
Stachel
,
H.
,
2014
, “
On the Flexibility and Symmetry of Overconstrained Mechanisms
,”
Philos. Trans. R. Soc. A
,
372
(
2008
), p. 20120040.
44.
Nawratil
,
G.
,
2011
, “
Reducible Compositions of Spherical Four-Bar Linkages With a Spherical Coupler Component
,”
Mech. Mach. Theory
,
46
(
5
), pp.
725
742
.
45.
Tachi
,
T.
,
2010
, “
Freeform Variations of Origami
,”
J. Geom. Graphics
,
14
(
2
), pp.
203
215
.
46.
Abdul-Sater
,
K.
,
Lueth
,
T. C.
, and
Irlinger
,
F.
,
2014
, “
Kinematic Design of Miura-Ori-Based Folding Structures Using the Screw Axis of a Relative Displacement
,”
Advances in Robot Kinematics
,
J.
Lenarčič
, and
O.
Khatib
, eds.,
Springer
,
Cham, Switzerland
, pp.
233
241
.
47.
Abdul-Sater
,
K.
,
Irlinger
,
F.
, and
Lueth
,
T. C.
,
2013
, “
Two-Configuration Synthesis of Origami-Guided Planar, Spherical and Spatial Revolute–Revolute Chains
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
031005
.
48.
Abdul-Sater
,
K.
,
Irlinger
,
F.
, and
Lueth
,
T. C.
,
2014
, “
Four-Position Synthesis of Origami-Evolved, Spherically Constrained Planar RR Chains
,”
Interdisciplinary Applications of Kinematics
,
A.
Kecskeméthy
and
F.
Geu Flores
, eds.,
Springer
,
Cham, Switzerland
, pp.
63
71
.
49.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Lang
,
R. J.
,
2013
, “
A Classification of Action Origami as Systems of Spherical Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111008
.
50.
Wei
,
G.
, and
Dai
,
J. S.
,
2009
, “
Geometry and Kinematic Analysis of an Origami-Evolved Mechanism Based on Artmimetics
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
(
ReMAR 2009
), London, June 22–24, pp.
450
455
.
51.
Alizade
,
R. I.
,
Kiper
,
G.
,
Bağdadioğlu,
,
B.
, and
Can Dede
,
M. I.
,
2014
, “
Function Synthesis of Bennett 6R Mechanisms Using Chebyshev Approximation
,”
Mech. Mach. Theory
,
81
, pp.
62
78
.
52.
Veldkamp
,
G. R.
,
1967
, “
Canonical Systems and Instantaneous Invariants in Spatial Kinematics
,”
Mech. Mach. Theory
,
2
(
3
), pp.
329
388
.
53.
Suh
,
C. H.
,
1969
, “
On the Duality in the Existence of R-R Links for Three Positions
,”
ASME J. Manuf. Sci. Eng.
,
91
(
1
), pp.
129
134
.
54.
Tsai
,
L.-W.
, and
Roth
,
B.
,
1972
, “
Design of Dyads With Helical, Cylindrical, Spherical, Revolute, and Prismatic Joints
,”
Mech. Mach. Theory
,
7
(
1
), pp.
85
102
.
55.
Tsai
,
L.-W.
, and
Roth
,
B.
,
1973
, “
A Note on the Design of Revolute–Revolute Cranks
,”
Mech. Mach. Theory
,
8
(
1
), pp.
23
31
.
56.
Huang
,
C.
,
1997
, “
The Cylindroid Associated With Finite Motions of the Bennett Mechanism
,”
ASME J. Mech. Des.
,
119
(4), pp.
521
524
.
57.
Brunnthaler
,
K.
,
Schröcker,
,
H.-P.
, and
Husty
,
M.
,
2005
, “
A New Method for the Synthesis of Bennett Mechanisms
,”
International Workshop on Computational Kinematics
(
CK2005
), Cassino, Italy, May 4–6, Paper No. 53CK2005.
58.
McCarthy
,
J. M.
,
1990
,
An Introduction to Theoretical Kinematics
,
MIT Press, Cambridge
,
MA
.
59.
Chiang
,
C. H.
,
1988
,
Kinematics of Spherical Mechanisms
,
Cambridge University Press
,
Cambridge, UK
.
60.
Yihun
,
Y.
,
Bosworth
,
K. W.
, and
Perez-Gracia
,
A.
,
2014
, “
Link-Based Performance Optimization of Spatial Mechanisms
,”
ASME J. Mech. Des.
,
136
(
12
), p.
122303
.
61.
Fischer
,
M.
,
Richter
,
C.
,
Irlinger
,
F.
,
Pollehn
,
D.
, and
Lueth
,
T. C.
,
2007
, “
Reduktion des Tuer-Diskompforts Beim ein- und Ausstieg in Engen Parksituationen
,”
Automobiltech. Z.
,
109
(
9
), pp.
820
829
.
62.
Richter
,
C.
,
Fischer
,
M.
,
Irlinger
,
F.
, and
Lueth
,
T. C.
,
2009
, “
A Spatial Path Specification System for Mechanism Development
,”
2nd Conference on Human System Interaction
(
HSI '09
), Cantania, Italy, May 21–23, pp.
236
241
.
63.
O'Rourke
,
J.
,
1998
,
Computational Geometry in C
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.