This paper investigates the influence of the load connection form on the walking energetics and kinetics with simple models. Four load connection forms including rigid connection (RIC), springy connection (SPC), swingy connection (SWC), and springy and swingy connection (SSC) were modeled. The step-to-step transition of periodic walking was studied through an analytical method. The toe-off impulse magnitude and the work done by toe-off were derived. Simulations were performed to study the walking performance of each model and the effect of model parameters on the gait properties. The analysis and simulation results showed that compared with RIC, SPC and SSC can significantly improve the toe-off efficiency and change the ground reaction force (GRF) profile by reducing the burden during the step-to-step transition, which may lead to reduction of walking energy cost. Energetics and kinetics of SWC are closely related to the swing angle of load at the transition moment. The load swing may decrease the walking speed, and it is not beneficial to walking efficiency.

References

1.
Raibert
,
M.
,
Blankespoor
,
K.
,
Nelson
,
G.
,
Playter
,
R.
, and
Team
,
T.
,
2008
, “
BigDog, the Rough-Terrain Quadruped Robot
,”
IFAC Proc.
,
41
(
2
), pp.
10822
10825
.
2.
Rome
,
L. C.
,
Flynn
,
L.
, and
Yoo
,
T. D.
,
2006
, “
Biomechanics: Rubber Bands Reduce the Cost of Carrying Loads
,”
Nature
,
444
(
7122
), pp.
1023
1024
.
3.
Rome
,
L. C.
,
Flynn
,
L.
,
Goldman
,
E. M.
, and
Yoo
,
T. D.
,
2005
, “
Generating Electricity While Walking With Loads
,”
Science
,
309
(
5741
), pp.
1725
1728
.
4.
Ackerman
,
J.
, and
Seipel
,
J.
,
2013
, “
Energy Efficiency of Legged Robot Locomotion With Elastically Suspended Loads
,”
IEEE Trans. Robotics
,
29
(
2
), pp.
321
330
.
5.
Ackerman
,
J.
, and
Seipel
,
J.
,
2014
, “
A Model of Human Walking Energetics With an Elastically-Suspended Load
,”
J. Biomech.
,
47
(
8
), pp.
1922
1927
.
6.
Kram
,
R.
,
1991
, “
Carrying Loads With Springy Poles
,”
J. Appl. Physiol.
,
71
(
3
), pp.
1119
1122
.
7.
Ackerman
,
J.
, and
Seipel
,
J.
,
2011
, “
Energetics of Bio-Inspired Legged Robot Locomotion With Elastically-Suspended Loads
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), San Francisco, CA, Sept. 25–30, pp.
203
208
.
8.
Kuo
,
A. D.
,
2005
, “
Harvesting Energy by Improving the Economy of Human Walking
,”
Science
,
309
(
5741
), pp.
1686
1687
.
9.
Bruijn
,
S. M.
,
Meijer
,
O. G.
,
Beek
,
P. J.
, and
van Dieën
,
J. H.
,
2010
, “
The Effects of Arm Swing on Human Gait Stability
,”
J. Exp. Biol.
,
213
(
23
), pp.
3945
3952
.
10.
Collins
,
S. H.
,
Adamczyk
,
P. G.
, and
Kuo
,
A. D.
,
2009
, “
Dynamic Arm Swinging in Human Walking
,”
Proc. R. Soc. B: Biol. Sci.
,
276
(
1673
), pp.
3679
3688
.
11.
Umberger
,
B. R.
,
2008
, “
Effects of Suppressing Arm Swing on Kinematics, Kinetics, and Energetics of Human Walking
,”
J. Biomech.
,
41
(
11
), pp.
2575
2580
.
12.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Rob. Res.
,
9
(
2
), pp.
62
82
.
13.
Asano
,
F.
,
Sogawa
,
T.
,
Tamura
,
K.
, and
Akutsu
,
Y.
,
2013
, “
Passive Dynamic Walking of Rimless Wheel With 2-DOF Wobbling Mass
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–8, pp.
3120
3125
.
14.
Fu
,
C.
,
Wang
,
J.
,
Chen
,
K.
,
Yu
,
Z.
, and
Huang
,
Q.
,
2016
, “
A Walking Control Strategy Combining Global Sensory Reflex and Leg Synchronization
,”
Robotica
,
34
(
05
), pp.
973
994
.
15.
Fu
,
C.
,
Tan
,
F.
, and
Chen
,
K.
,
2010
, “
A simple Walking Strategy for Biped Walking Based on an Intermittent Sinusoidal Oscillator
,”
Robotica
,
28
(
06
), pp.
869
884
.
16.
Garcia
,
M.
,
Chatterjee
,
A.
,
Rulna
,
A.
, and
Coleman
,
M.
,
1998
, “
The Simplest Walking Model: Stability, Complexity, and Scaling
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
281
288
.
17.
Kuo
,
A. D.
,
2002
, “
Energetics of Actively Powered Locomotion Using the Simplest Walking Model
,”
ASME J. Biomech. Eng.
,
124
(
1
), pp.
113
120
.
18.
Potwar
,
K.
,
Ackerman
,
J.
, and
Seipel
,
J.
,
2015
, “
Design of Compliant Bamboo Poles for Carrying Loads
,”
ASME J. Mech. Des.
,
137
(
1
), p.
011404
.
19.
Levine
,
D.
,
Richards
,
J.
, and
Whittle
,
M. W.
,
2012
,
Whittle's Gait Analysis
,
Churchill Livingstone
,
London
.
20.
Castillo
,
E. R.
,
Lieberman
,
G. M.
,
McCarty
,
L. S.
, and
Lieberman
,
D. E.
,
2014
, “
Effects of Pole Compliance and Step Frequency on the Biomechanics and Economy of Pole Carrying During Human Walking
,”
J. Appl. Physiol.
,
117
(
5
), pp.
507
517
.
21.
Kuo
,
A. D.
,
Donelan
,
J. M.
, and
Ruina
,
A.
,
2005
, “
Energetic Consequences of Walking Like an Inverted Pendulum: Step-to-Step Transitions
,”
Exercise Sport Sci. Rev.
,
33
(
2
), pp.
88
97
.
22.
Foissac
,
M.
,
Millet
,
G. Y.
,
Geyssant
,
A.
,
Freychat
,
P.
, and
Belli
,
A.
,
2009
, “
Characterization of the Mechanical Properties of Backpacks and Their Influence on the Energetics of Walking
,”
J. Biomech.
,
42
(
2
), pp.
125
130
.
23.
Kuo
,
A. D.
,
2001
, “
A Simple Model of Bipedal Walking Predicts the Preferred Speed-Step Length Relationship
,”
ASME J. Biomech. Eng.
,
123
(
3
), pp.
264
269
.
24.
Alexander
,
R. M.
,
2005
, “
Walking Made Simple
,”
Science
,
308
(
5718
), pp.
58
59
.
25.
Doke
,
J.
,
Donelan
,
J. M.
, and
Kuo
,
A. D.
,
2005
, “
Mechanics and Energetics of Swinging the Human Leg
,”
J. Exp. Biol.
,
208
(
3
), pp.
439
445
.
26.
Collins
,
S. H.
,
Wiggin
,
M. B.
, and
Sawicki
,
G. S.
,
2015
, “
Reducing the Energy Cost of Human Walking Using an Unpowered Exoskeleton
,”
Nature
,
522
(
7555
), pp.
212
215
.
You do not currently have access to this content.