This paper explores the design of a dynamically weighted therapy bar, which can provide real-time quantitative performance information and adjustments during rehabilitation exercise. In contrast, typical therapy equipment is passive, offering no feedback to the patient or clinician. The dynamic weighted bar (DWB) was designed and fabricated containing an inertial sensor which tracks the orientation of the bar and adjusts the position of an internal weight accordingly, in turn providing a targeted force imbalance between the patient's two arms. Step input experiments were performed on the device while it was held in various stationary positions. The DWB was able to successfully function and transmit motion information. It was able to produce a center of mass shift of 101.6 mm, and a complete travel time between 0.96 s and 1.41 s over the entire length. The use of the DWB device can offer many benefits during rehabilitation including access to more quantitative information for clinicians as well as the potential for more personalized therapy programs.

References

1.
Go
,
A. S.
,
Mozaffarian
,
D.
,
Roger
,
V. L.
,
Benjamin
,
E. J.
,
Berry
,
J. D.
,
Blaha
,
M. J.
,
Dai
,
S. F.
,
Ford
,
E. S.
,
Fox
,
C. S.
,
Franco
,
S.
,
Fullerton
,
H. J.
,
Gillespie
,
C.
,
Hailpern
,
S. M.
,
Heit
,
J. A.
,
Howard
,
V. J.
,
Huffman
,
M. D.
,
Judd
,
S. E.
,
Kissela
,
B. M.
,
Kittner
,
S. J.
,
Lackland
,
D. T.
,
Lichtman
,
J. H.
,
Lisabeth
,
L. D.
,
Mackey
,
R. H.
,
Magid
,
D. J.
,
Marcus
,
G. M.
,
Marelli
,
A.
,
Matchar
,
D. B.
,
McGuire
,
D. K.
,
Mohler
,
E. R.
,
Moy
,
C. S.
,
Mussolino
,
M. E.
,
Neumar
,
R. W.
,
Nichol
,
G.
,
Pandey
,
D. K.
,
Paynter
,
N. P.
,
Reeves
,
M. J.
,
Sorlie
,
P. D.
,
Stein
,
J.
,
Towfighi
,
A.
,
Turan
,
T. N.
,
Virani
,
S. S.
,
Wong
,
N. D.
,
Woo
,
D.
,
Turner
,
M. B.
,
Comm
,
A. H. A. S.
, and
Subcomm
,
S. S.
,
2014
, “
Heart Disease and Stroke Statistics-2014 Update a Report From the American Heart Association
,”
Circulation
,
129
(
3
), pp.
E28
E292
.
2.
Bonita
,
R.
, and
Beaglehole
,
R.
,
1988
, “
Recovery of Motor Function After Stroke
,”
Stroke
,
19
(
12
), pp.
1497
1500
.
3.
Khan
,
L.
,
Zygman
,
M.
,
Rymer
,
W.
, and
Reinkensmeyer
,
D.
,
2006
, “
Robot-Assisted Reaching Exercise Promotes Arm Movement Recovery in Chronic Hemiparetic Stroke: A Randomised Controlled Pilot Study 6
,”
J. NeuroEng. Rehabil.
,
3
(
2
), pp.
1
13
.
4.
Lum
,
P. S.
,
Taub
,
E.
,
Schwandt
,
D.
,
Postman
,
M.
,
Hardin
,
P.
, and
Uswatte
,
G.
,
2004
, “
Automated Constraint-Induced Therapy Extension (AutoCITE) for Movement Deficits After Stroke
,”
J. Rehabil. Res. Dev.
,
41
(
3
), pp.
249
258
.
5.
Sanchez
,
R. J.
,
Liu
,
J.
,
Rao
,
S.
,
Shah
,
P.
,
Smith
,
R.
,
Rahman
,
T.
,
Cramer
,
S. C.
,
Bobrow
,
J. E.
, and
Reinkensmeyer
,
D. J.
,
2006
, “
Automating Arm Movement Training Following Severe Stroke: Functional Exercises With Quantitative Feedback in a Gravity-Reduced Environment
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
14
(
3
), pp.
378
389
.
6.
Burgar
,
C. G.
,
Lum
,
P. S.
,
Shor
,
P. C.
, and
Van der Loos
,
H. F. M.
,
2000
, “
Development of Robots for Rehabilitation Therapy: The Palo Alto VA/Stanford Experience
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
663
673
.
7.
Mataric
,
M. J.
,
Eriksson
,
J.
,
Feil-Seifer
,
D. J.
, and
Winstein
,
C. J.
,
2007
, “
Socially Assistive Robotics for Post-Stroke Rehabilitation
,”
J. NeuroEng. Rehabil.
,
4
(
1
), p. 5.
8.
Prange
,
G. B.
,
Jannink
,
M. J. A.
,
Groothuis-Oudshoorn
,
C. G. M.
,
Hermens
,
H. J.
, and
IJzerman
,
M. J.
,
2006
, “
Systematic Review of the Effect of Robot-Aided Therapy on Recovery of the Hemiparetic Arm After Stroke
,”
J. Rehabil. Res. Dev.
,
43
(
2
), pp.
171
183
.
9.
Reinkensmeyer
,
D. J.
,
Hogan
,
N.
,
Krebs
,
H. I.
,
Lehman
,
S. L.
,
Lum
,
P. S.
, and
Newman
,
D. J.
,
2000
, “
Rehabilitators, Robots, and Guides: New Tools for Neurological Rehabilitation
,”
Biomechanics and Neural Control of Posture and Movement
,
Springer
, New York, pp.
516
534
.
10.
Colombo
,
R.
,
Pisano
,
F.
,
Micera
,
S.
,
Mazzone
,
A.
,
Delconte
,
C.
,
Carrozza
,
M. C.
,
Dario
,
P.
, and
Minuco
,
G.
,
2005
, “
Robotic Techniques for Upper Limb Evaluation and Rehabilitation of Stroke Patients
,”
IEEE Trans. Neural Syst. Rehabil.
,
13
(
3
), pp.
311
324
.
11.
Volpe
,
B. T.
,
Krebs
,
H. I.
,
Hogan
,
N.
,
Edelstein
,
L.
,
Diels
,
C.
, and
Aisen
,
M.
,
2000
, “
A Novel Approach to Stroke Rehabilitation—Robot-Aided Sensorimotor Stimulation
,”
Neurology
,
54
(
10
), pp.
1938
1944
.
12.
Charnnarong
,
J.
,
Hogan
,
N.
,
Krebs
,
H. I.
, and
Sharon
,
A.
,
1995
, “
Interactive Robotic Therapist
,” U.S. Patent No. 5,466,213.
13.
Reinkensmeyer
,
D. J.
,
Dewald
,
J. P.
, and
Rymer
,
W. Z.
,
1999
, “
Guidance-Based Quantification of Arm Impairment Following Brain Injury: A Pilot Study
,”
IEEE Trans. Rehabil. Eng.
,
7
(
1
), pp.
1
11
.
14.
Lum
,
P. S.
,
Burgar
,
C. G.
,
Shor
,
P. C.
,
Majmundar
,
M.
, and
Van der Loos
,
M.
,
2002
, “
Robot-Assisted Movement Training Compared With Conventional Therapy Techniques for the Rehabilitation of Upper-Limb Motor Function After Stroke
,”
Arch. Phys. Med. Rehabil.
,
83
(
7
), pp.
952
959
.
15.
Riener
,
R.
,
Nef
,
T.
, and
Colombo
,
G.
,
2005
, “
Robot-Aided Neurorehabilitation of the Upper Extremities
,”
Med. Biol. Eng. Comput.
,
43
(
1
), pp.
2
10
.
16.
Fitzgerald
,
G. K.
,
Axe
,
M. J.
, and
Snyder-Mackler
,
L.
,
2000
, “
The Efficacy of Perturbation Training in Nonoperative Anterior Cruciate Ligament Rehabilitation Programs for Physically Active Individuals
,”
Phys. Ther.
,
80
(
2
), pp.
128
140
.
You do not currently have access to this content.