Abstract

The use of virtual reality in the rehabilitation of lost or diminished functions after a stroke has been shown to be an innovative means in motor recovery. However, there are still several design challenges to increment the efficiency of these systems. This paper presents the development and evaluation of a nonimmersive three-dimensional virtual environment for poststroke rehabilitation of elbow flexion–extension movements, which considers the therapist as a direct user and the patient as a secondary user. The development of virtual environment was supported by the criteria of a team of specialists in physical and occupational therapy, following the philosophy of user-centered design through three iterations, and incorporating tasks based on the activities of daily living of the Barthel scale. Tests were carried out with healthy users and a patient with a diagnosis of stroke, using the system usability scale (SUS) test and a flow status questionnaire, respectively. Average satisfaction of user group without diagnosis was 79.6 out of 100 points. On the other hand, according to mean values observed with the patient, dimensions of control sense (6.33) and positive emotional experience (6.66) reflect an “optimal” experience, which indicates an enjoyment of virtual tasks despite the effort made to fulfill them.

References

1.
Fried
,
L. P.
,
Bentley
,
M. E.
,
Buekens
,
P.
,
Burke
,
D. S.
,
Frenk
,
J. J.
,
Klag
,
M. J.
, and
Spencer
,
H. C.
,
2010
, “
Global Health is Public Health
,”
Lancet
,
375
(
9714
), pp.
535
537
.10.1016/S0140-6736(10)60203-6
2.
Collin
,
C.
, and
Wade
,
D.
,
1990
, “
Assessing Motor Impairment After Stroke: A Pilot Reliability Study
,”
J. Neurol., Neurosurg. Psychiatry
,
53
(
7
), pp.
576
579
.10.1136/jnnp.53.7.576
3.
Kim
,
O.
, and
Kim
,
J. H.
,
2015
, “
Falls and Use of Assistive Devices in Stroke Patients With Hemiparesis: Association With Balance Ability and Fall Efficacy
,”
Rehabil. Nurs.
,
40
(
4
), pp.
267
274
.10.1002/rnj.173
4.
Barbosa
,
I. M.
,
Alves
,
P. R.
, and
Silveira
,
Z. C.
,
2021
, “
Upper Limbs' Assistive Devices for Stroke Rehabilitation: A Systematic Review on Design Engineering Solutions
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
5
), p.
236
.10.1007/s40430-021-02919-4
5.
Langan
,
J.
,
Subryan
,
H.
,
Nwogu
,
I.
, and
Cavuoto
,
L.
,
2018
, “
Reported Use of Technology in Stroke Rehabilitation by Physical and Occupational Therapists
,”
Disabil. Rehabil. Assist. Technol.
,
13
(
7
), pp.
641
647
.10.1080/17483107.2017.1362043
6.
Akbari
,
A.
,
Haghverd
,
F.
, and
Behbahani
,
S.
,
2021
, “
Robotic Home-Based Rehabilitation Systems Design: From a Literature Review to a Conceptual Framework for Community-Based Remote Therapy During COVID-19 Pandemic
,”
Front. Rob. AI
,
8
(
1
), p.
612331
.10.3389/frobt.2021.612331
7.
Chen
,
Y.
,
Abel
,
K. T.
,
Janecek
,
J. T.
,
Chen
,
Y.
,
Zheng
,
K.
, and
Cramer
,
S. C.
,
2019
, “
Home-Based Technologies for Stroke Rehabilitation: A Systematic Review
,”
Int. J. Med. Inform.
,
123
(
1
), pp.
11
22
.10.1016/j.ijmedinf.2018.12.001
8.
Li
,
Z.
,
Su
,
C.-Y.
,
Li
,
G.
, and
Su
,
H.
,
2015
, “
Fuzzy Approximation-Based Adaptive Backstepping Control of an Exoskeleton for Human Upper Limbs
,”
IEEE Trans. Fuzzy Syst.
,
23
(
3
), pp.
555
566
.10.1109/TFUZZ.2014.2317511
9.
Knutson
,
J. S.
,
Chae
,
J.
,
Hart
,
R. L.
,
Keith
,
M. W.
,
Hoyen
,
H. A.
,
Harley
,
M. Y.
,
Hisel
,
T. Z.
,
Bryden
,
A. M.
,
Kilgore
,
K. L.
, and
Peckham
,
H.
,
2012
, “
Implanted Neuroprosthesis for Assisting Arm and Hand Function After Stroke: A Case Study
,”
J. Rehabil. Res. Dev.
,
49
(
10
), pp.
1505
1516
.10.1682/JRRD.2011.09.0171
10.
van Swigchem
,
R.
,
Weerdesteyn
,
V.
,
van Duijnhoven
,
H. J.
,
den Boer
,
J.
,
Beems
,
T.
, and
Geurts
,
A. C.
,
2011
, “
Near-Normal Gait Pattern With Peroneal Electrical Stimulation as a Neuroprosthesis in the Chronic Phase of Stroke: A Case Report
,”
Arch. Phys. Med. Rehabil.
,
92
(
2
), pp.
320
324
.10.1016/j.apmr.2010.10.038
11.
Qi
,
W.
,
Su
,
H.
, and
Aliverti
,
A.
,
2020
, “
A Smartphone-Based Adaptive Recognition and Real-Time Monitoring System for Human Activities
,”
IEEE Trans. Human-Mach. Syst.
,
50
(
5
), pp.
414
423
.10.1109/THMS.2020.2984181
12.
Straczkiewicz
,
M.
,
James
,
P.
, and
Onnela
,
J.-A.
,
2021
, “
Systematic Review of Smartphone-Based Human Activity Recognition Methods for Health Research
,”
NPJ Dig. Med.
,
4
(
1
), p.
148
.10.1038/s41746-021-00514-4
13.
Ambrosini
,
E.
,
Ferrante
,
S.
,
Zajc
,
J.
,
Bulgheroni
,
M.
,
Baccinelli
,
W.
,
d'Amico
,
E.
,
Schauer
,
T.
,
Wiesener
,
C.
,
Russold
,
M.
,
Gfoehler
,
M.
,
Puchinger
,
M.
,
Weber
,
M.
,
Becker
,
S.
,
Krakow
,
K.
,
Rossini
,
M.
,
Proserpio
,
D.
,
Gasperini
,
G.
,
Molteni
,
F.
,
Ferrigno
,
G.
, and
Pedrocchi
,
A.
,
2017
, “
The Combined Action of a Passive Exoskeleton and an EMG-Controlled Neuroprosthesis for Upper Limb Stroke Rehabilitation: First Results of the RETRAINER Project
,” International Conference on Rehabilitation Robotics (
ICORR
), London, UK, July 17–20, pp.
56
61
.10.1109/ICORR.2017.8009221
14.
de Rooij
,
I. J. M.
,
van de Port
,
I. G. L.
, and
Meijer
,
J.-W. G.
,
2016
, “
Effect of Virtual Reality Training on Balance and Gait Ability in Patients With Stroke: Systematic Review and Meta-Analysis
,”
Phys. Ther.
,
96
(
12
), pp.
1905
1918
.10.2522/ptj.20160054
15.
Moreira
,
M. C.
,
de Amorim
,
A. M.
,
Ferraz
,
K. M.
, and
Benedetti
,
M. A.
,
2013
, “
Use of Virtual Reality in Gait Recovery Among Post Stroke Patients – A Systematic Literature Review
,”
Disabil. Rehabil. Assist. Technol.
,
8
(
5
), pp.
357
362
.10.3109/17483107.2012.749428
16.
Henderson
,
A.
,
Korner-Bitensky
,
N.
, and
Levin
,
M.
,
2007
, “
Virtual Reality in Stroke Rehabilitation: A Systematic Review of Its Effectiveness for Upper Limb Motor Recovery
,”
Top. Stroke Rehabil.
,
14
(
2
), pp.
52
61
.10.1310/tsr1402-52
17.
Luque-Moreno
,
C.
,
Ferragut-Garcías
,
A.
,
Rodríguez-Blanco
,
C.
,
Heredia-Rizo
,
A. M.
,
Oliva-Pascual-Vaca
,
J.
,
Kiper
,
P.
, and
Oliva-Pascual-Vaca
,
Á.
,
2015
, “
A Decade of Progress Using Virtual Reality for Poststroke Lower Extremity Rehabilitation: Systematic Review of the Intervention Methods
,”
BioMed Res. Int.
,
2015
, pp.
1
7
.10.1155/2015/342529
18.
Rodrigues-Baroni
,
J. M.
,
Nascimento
,
L. R.
,
Ada
,
L.
, and
Teixeira-Salmela
,
L. F.
,
2014
, " “
Walking Training Associated With Virtual Reality-Based Training Increases Walking Speed of Individuals With Chronic Stroke: Systematic Review With Meta-Analysis
,”
Braz. J. Phys. Ther.
,
18
(
6
), pp.
502
512
.10.1590/bjpt-rbf.2014.0062
19.
da Fonseca
,
E. P.
,
da Silva
,
N. M. R.
, and
Pinto
,
E. B.
,
2017
, “
Therapeutic Effect of Virtual Reality on Post-Stroke Patients: Randomized Clinical Trial
,”
J. Stroke Cerebrovasc. Diseases
,
26
(
1
), pp.
94
100
.10.1016/j.jstrokecerebrovasdis.2016.08.035
20.
Viñas-Diz
,
S.
, and
Sobrido-Prieto
,
M.
,
2016
, “
Realidad Virtual Con Fines Terapéuticos en Pacientes Con Ictus: Revisión Sistemática
,”
Neurología
,
31
(
4
), pp.
255
277
.10.1016/j.nrl.2015.06.012
21.
Bevilacqua
,
R.
,
Maranesi
,
E.
,
Riccardi
,
G. R.
,
Di Donna
,
V.
,
Pelliccioni
,
P.
,
Luzi
,
R.
,
Lattanzio
,
F.
, and
Pelliccioni
,
G.
,
2019
, “
Non-Immersive Virtual Reality for Rehabilitation of the Older People: A Systematic Review Into Efficacy and Effectiveness
,”
J. Clin. Med.
,
8
(
11
), p.
1882
.10.3390/jcm8111882
22.
Lewis
,
G. N.
, and
Rosie
,
J. A.
,
2012
, “
Virtual Reality Games for Movement Rehabilitation in Neurological Conditions: How Do We Meet the Needs and Expectations of the Users?
,”
Disabil. Rehabil.
,
34
(
22
), pp.
1880
1886
.10.3109/09638288.2012.670036
23.
Gabbard
,
J. L.
,
Hix
,
D.
, and
Swan
,
J. E.
,
1999
, “
User-Centered Design and Evaluation of Virtual Environments
,”
IEEE Comput. Graph. Appl.
,
19
(
6
), pp.
51
59
.10.1109/38.799740
24.
Kim
,
W. S.
,
Cho
,
S.
,
Park
,
S. H.
,
Lee
,
J. Y.
,
Kwon
,
S.
, and
Paik
,
N. J.
,
2018
, “
A Low Cost Kinect-Based Virtual Rehabilitation System for Inpatient Rehabilitation of the Upper Limb in Patients With Subacute Stroke: A Randomized, Double Blind, Sham-Controlled Pilot Trial
,”
Medicine
,
97
(
25
), p.
e11173
.10.1097/MD.0000000000011173
25.
Fu
,
M. J.
,
Knutson
,
J. S.
, and
Chae
,
J.
,
2015
, “
Stroke Rehabilitation Using Virtual Environments
,”
Phys. Med. Rehabil. Clin.
,
26
(
4
), pp.
747
757
.10.1016/j.pmr.2015.06.001
26.
Ahn
,
S.
, and
Hwang
,
S.
,
2019
, “
Virtual Rehabilitation of Upper Extremity Function and Independence for Stroke: A Meta-Analysis
,”
J. Exer. Rehabil.
,
15
(
3
), pp.
358
369
.10.12965/jer.1938174.087
27.
Camargo
,
A.
,
Carmo
,
J. F.
,
Rosa-Castro
,
R. M.
,
Rodrigues
,
C.
,
Mazzei
,
L. G.
,
Scalha
,
T. B.
, and
Andrade
,
A. C. N. B.
,
2019
, “
The Influence of Virtual Reality on Rehabilitation of Upper Limbs and Gait After Stroke: A Systematic Review
,”
J. Innov. Healthcare Manage.
,
2
(
1
), pp.
1
16
.10.20396/jihm.v2i0.11803
28.
Karamians
,
R.
,
Proffitt
,
R.
,
Kline
,
D.
, and
Gauthier
,
L. V.
,
2020
, “
Effectiveness of Virtual Reality-and Gaming-Based Interventions for Upper Extremity Rehabilitation Poststroke: A Meta-Analysis
,”
Arch. Phys. Med. Rehabil.
,
101
(
5
), pp.
885
896
.10.1016/j.apmr.2019.10.195
29.
Bravo
,
D. A.
,
Rengifo
,
C. F.
, and
Agredo
,
W.
,
2016
, “
Comparación de Dos Sistemas de Captura de Movimiento Por Medio de Las Trayectorias Articulares de Marcha
,”
Rev. Mex. Ing. Bioméd.
,
37
(
2
), pp.
149
160
.10.17488/rmib.37.2.2
30.
Liao
,
Y.
,
Vakanski
,
A.
,
Xian
,
M.
,
Paul
,
D.
, and
Baker
,
R.
,
2020
, “
A Review of Computational Approaches for Evaluation of Rehabilitation Exercises
,”
Comput. Biol. Med.
,
119
(
1
), p.
103687
.10.1016/j.compbiomed.2020.103687
31.
Vallejo
,
D.
,
Gmez-Portes
,
C.
,
Albusac
,
J.
,
Glez-Morcillo
,
C.
, and
Castro-Schez
,
J. J.
,
2020
, “
Personalized Exergames Language: A Novel Approach to the Automatic Generation of Personalized Exergames for Stroke Patients
,”
Appl. Sci.
,
10
(
20
), p.
7378
.10.3390/app10207378
32.
Lledó
,
L. D.
,
Díez
,
J. A.
,
Bertomeu-Motos
,
A.
,
Ezquerro
,
S.
,
Badesa
,
F. J.
,
Sabater-Navarro
,
J. M.
, and
García-Aracil
,
N.
,
2016
, “
A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-Stroke Patients
,”
Front. Aging Neurosci.
,
8
(
1
), p.
205
.10.3389/fnagi.2016.00205
33.
Roettl
,
J.
, and
Terlutter
,
R.
,
2018
, “
The Same Video Game in 2D, 3D or Virtual Reality–How Does Technology Impact Game Evaluation and Brand Placements?
,”
PLoS One
,
13
(
7
), p.
e0200724
.10.1371/journal.pone.0200724
34.
Chartomatsidis
,
M.
, and
Goumopoulos
,
C.
,
2019
, “
A Balance Training Game Tool for Seniors Using Microsoft Kinect and 3D Worlds
,” Fifth International Conference on Information and Communication Technologies for Ageing Well and e-Health (
CT4AWE 2019
), Heraklion, Crete, May 2–4, pp.
135
145
.10.5220/0007759001350145
35.
Brox
,
E.
,
Konstantinidis
,
S. T.
, and
Evertsen
,
G.
,
2017
, “
User-Centered Design of Serious Games for Older Adults Following 3 Y Ears of Experience With Exergames for Seniors: A Study Design
,”
JMIR Serious Games
,
5
(
1
), p.
e2
.10.2196/games.6254
36.
Tamayo-Serrano
,
P.
,
Garbaya
,
S.
,
Bouakaz
,
S.
, and
Blazevic
,
P.
,
2020
, “
A Game-Based Rehabilitation Therapy for Post-Stroke Patients: An Approach for Improving Patient Motivation and Engagement
,”
IEEE Syst., Man, Cybern. Mag.
,
6
(
4
), pp.
54
62
.10.1109/MSMC.2020.3002519
37.
Ivanova
,
E.
,
Minge
,
M.
,
Schmidt
,
H.
,
Thüring
,
M.
, and
Krüger
,
J.
,
2017
, “
User-Centered Design of a Patient's Workstation for Haptic Robot-Based Telerehabilitation After Stroke
,”
Curr. Direct. Biomed. Eng.
,
3
(
1
), pp.
39
43
.10.1515/cdbme-2017-0009
38.
Reis
,
A.
,
Lains
,
J.
,
Paredes
,
H.
,
Filipe
,
V.
,
Abrantes
,
C.
,
Ferreira
,
F.
,
Mendes
,
R.
,
Amorim
,
P.
, and
Barroso
,
J.
,
2016
, “
Developing a System for Post-Stroke Rehabilitation: An Exergames Approach
,”
10th International Conference on Universal Access in Human-Computer Interaction
, Toronto, ON, Canada, July 17–22, pp.
403
413
.10.1007/978-3-319-40238-3_39
39.
Hung
,
Y. X.
,
Huang
,
P. C.
,
Chen
,
K. T.
, and
Chu
,
W. C.
,
2016
, “
What Do Stroke Patients Look for in Game-Based Rehabilitation: A Survey Study
,”
Medicine
,
95
(
11
), p.
e3032
.10.1097/MD.0000000000003032
40.
Shah
,
S.
,
Vanclay
,
F.
, and
Cooper
,
B.
,
1989
, “
Improving the Sensitivity of the Barthel Index for Stroke Rehabilitation
,”
J. Clin. Epidemiol.
,
42
(
8
), pp.
703
709
.10.1016/0895-4356(89)90065-6
41.
Fulk
,
G.
,
Martin
,
R.
, and
Page
,
S. J.
,
2017
, “
Clinically Important Difference of the Arm Motor Ability Test in Stroke Survivors
,”
Neurorehabil. Neural Repair
,
31
(
3
), pp.
272
279
.10.1177/1545968316680486
42.
Bangor
,
A.
,
Kortum
,
P. T.
, and
Miller
,
J. T.
,
2008
, “
An Empirical Evaluation of the System Usability Scale
,”
Int. J. Human–Comput. Interact.
,
24
(
6
), pp.
574
594
.10.1080/10447310802205776
43.
Jackson
,
S. A.
, and
Marsh
,
H. W.
,
1996
, “
Development and Validation of a Scale to Measure Optimal Experience: The Flow State Scale
,”
J. Sport Exer. Psychol.
,
18
(
1
), pp.
17
35
.10.1123/jsep.18.1.17
44.
Yoshida
,
K.
,
Asakawa
,
K.
,
Yamauchi
,
T.
,
Sakuraba
,
S.
,
Sawamura
,
D.
,
Murakami
,
Y.
, and
Sakai
,
S.
,
2013
, “
The Flow State Scale for Occupational Tasks: Development, Reliability, and Validity
,”
Hong Kong J. Occup. Ther.
,
23
(
2
), pp.
54
61
.10.1016/j.hkjot.2013.09.002
45.
Lauesen
,
S.
,
2005
,
User Interface Design: A Software Engineering Perspective
,
Addison-Wesley
,
Boston, MA
.
46.
Moldovan
,
I. M.
,
Tric
,
L.
,
Ursu
,
R.
,
Podar
,
A.
,
Călin
,
A. D.
,
Cantea
,
A. C.
,
Dascălu
,
L. A.
, and
Mihaiu
,
C. A.
,
2017
, “
Virtual Rehabilitation Programme Using the MIRA Platform, Kinect and Leap Motion Sensors in an 81 Years Old Patient With Ischemic Stroke
,” E-Health and Bioengineering Conference (
EHB
), Sinaia, Romania, June 22–24, pp.
325
328
.10.1109/EHB.2017.7995427
47.
Nguyen
,
A. V.
,
Ong
,
Y. L. A.
,
Luo
,
C. X.
,
Thuraisingam
,
T.
,
Rubino
,
M.
,
Levin
,
M. F.
,
Kaizer
,
F.
, and
Archambault
,
P. S.
,
2019
, “
Virtual Reality Exergaming as Adjunctive Therapy in a Sub-Acute Stroke Rehabilitation Setting: Facilitators and Barriers
,”
Disabil. Rehabil. Assist. Technol.
,
14
(
4
), pp.
317
324
.10.1080/17483107.2018.1447608
48.
Cortés-Pérez
,
I.
,
Zagalaz-Anula
,
N.
,
Montoro-Cárdenas
,
D.
,
Lomas-Vega
,
R.
,
Obrero-Gaitán
,
E.
, and
Osuna-Pérez
,
M. C.
,
2021
, “
Leap Motion Controller Video Game-Based Therapy for Upper Extremity Motor Recovery in Patients With Central Nervous System Diseases. A Systematic Review With Meta-Analysis
,”
Sensors
,
21
(
6
), p.
2065
.10.3390/s21062065
49.
Garske
,
C.
,
Dyson
,
M.
,
Dupan
,
S.
,
Morgan
,
G.
, and
Nazarpour
,
K.
,
2021
, “
Serious Games Are Not Serious Enough for Myoelectric Prosthetics
,”
JMIR Serious Games
,
9
(
4
), p.
e28079
.10.2196/28079
You do not currently have access to this content.