Abstract

Malaria is a dangerous mosquito-borne infectious disease that causes millions of death cases each year worldwide, especially in Southeast Asia. Current P. falciparum detection methods (e.g., blood smear, enzyme-linked Immunosorbent assay, polymerase chain reaction (PCR), etc.) have many disadvantages, such as being time-consuming, dependent on the operator's experience, and relying on sophisticated instruments that hinder the point-of-care (POC) application. To overcome those drawbacks, we developed a colorimetric recombinase polymerase amplification (RPA) reaction on a digital microfluidic (DMF) platform using SYBR Green I as the indicator for a simple result readout step, thus simplifying the diagnostic procedure. Using primers specific for the lactate dehydrogenase (LDH) gene, P. falciparum plasmids were successfully detected under optimal conditions for RPA reaction. For the implementation of RPA on the DMF platform, 0.1% Tween-20 was added to support droplet movement on the chip without interfering with the reaction. The droplet pathway was designed so the system can carry out up to five samples simultaneously on one single DMF device, thus providing a time-efficient point-of-care method for detecting P. falciparum and laying a foundation for developing a simple diagnostic procedure for other diseases.

References

1.
Cowman
,
A. F.
,
Healer
,
J.
,
Marapana
,
D.
, and
Marsh
,
K.
,
2016
, “
Malaria: Biology and Disease
,”
Cell
,
167
(
3
), pp.
610
624
.10.1016/j.cell.2016.07.055
2.
van Dijk
,
M. R.
,
Waters
,
A. P.
, and
Janse
,
C. J.
,
1995
, “
Stable Transfection of Malaria Parasite Blood Stages
,”
Science
,
268
(
5215
), pp.
1358
1362
.10.1126/science.7761856
3.
Trampuz
,
A.
,
Jereb
,
M.
,
Muzlovic
,
I.
, and
Prabhu
,
R. M.
,
2003
, “
Clinical Review: Severe Malaria
,”
Crit. Care
,
7
(
4
), p.
315
.10.1186/cc2183
4.
Maltha
,
J.
,
Gillet
,
P.
, and
Jacobs
,
J.
,
2013
, “
Malaria Rapid Diagnostic Tests in Endemic Settings
,”
Clin. Microbiol. Infect.
,
19
(
5
), pp.
399
407
.10.1111/1469-0691.12151
5.
Berzosa
,
P.
,
de Lucio
,
A.
,
Romay-Barja
,
M.
,
Herrador
,
Z.
,
González
,
V.
,
García
,
L.
,
Fernández-Martínez
,
A.
, et al.,
2018
, “
Comparison of Three Diagnostic Methods (Microscopy, RDT, and PCR) for the Detection of Malaria Parasites in Representative Samples From Equatorial Guinea
,”
Malar. J.
,
17
(
1
), p.
333
.10.1186/s12936-018-2481-4
6.
Ohrt
,
C.
,
Purnomo
,
Sutamihardja
,
M. A.
,
Tang
,
D.
, and
Kain
,
K. C.
,
2002
, “
Impact of Microscopy Error on Estimates of Protective Efficacy in Malaria-Prevention Trials
,”
J. Infect. Dis.
,
186
(
4
), pp.
540
546
.10.1086/341938
7.
Oriero
,
E. C.
,
Jacobs
,
J.
,
Van Geertruyden
,
J.-P.
,
Nwakanma
,
D.
, and
D'Alessandro
,
U.
,
2015
, “
Molecular-Based Isothermal Tests for Field Diagnosis of Malaria and Their Potential Contribution to Malaria Elimination
,”
J. Antimicrob. Chemother.
,
70
(
1
), pp.
2
13
.10.1093/jac/dku343
8.
Piepenburg
,
O.
,
Williams
,
C. H.
,
Stemple
,
D. L.
, and
Armes
,
N. A.
,
2006
, “
DNA Detection Using Recombination Proteins
,”
PLoS Biol.
,
4
(
7
), p.
e204
.10.1371/journal.pbio.0040204
9.
Lobato
,
I. M.
, and
O'Sullivan
,
C. K.
,
2018
, “
Recombinase Polymerase Amplification: Basics, Applications and Recent Advances
,”
TrAC Trends Anal. Chem.
,
98
, pp.
19
35
.10.1016/j.trac.2017.10.015
10.
Lai
,
M. Y.
, and
Lau
,
Y. L.
,
2020
, “
Detection of Plasmodium Knowlesi Using Recombinase Polymerase Amplification (RPA) Combined With SYBR Green I
,”
Acta Trop.
,
208
, p.
105511
.10.1016/j.actatropica.2020.105511
11.
Fair
,
R. B.
,
2007
, “
Digital Microfluidics: Is a True Lab-on-a-Chip Possible?
,”
Microfluid. Nanofluid.
,
3
(
3
), pp.
245
281
.10.1007/s10404-007-0161-8
12.
Cho
,
S. K.
,
Fan
,
S.-K.
,
Moon
,
H.
, and
Kim
,
C.-J.
,
2002
, “
Towards Digital Microfluidic Circuits: Creating, Transporting, Cutting and Merging Liquid Droplets by Electrowetting-Based Actuation
,”
Technical Digest—15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2002) (Cat. No. 02CH37266)
, Las Vegas, NV, Jan. 24, pp.
32
35
.10.1109/MEMSYS.2002.984073
13.
Abdelgawad
,
M.
, and
Wheeler
,
A. R.
,
2007
, “
Rapid Prototyping in Copper Substrates for Digital Microfluidics
,”
Adv. Mater.
,
19
(
1
), pp.
133
137
.10.1002/adma.200601818
14.
Hoang
,
T.
,
Ly
,
B.-H.
,
Le
,
T.-X.
,
Huynh
,
T.-T.
,
Nguyen
,
H.-T.
,
Van Vo
,
T.
,
Pham
,
T. T. H.
, and
Huynh
,
K.
,
2020
, “
Minimal Microfabrication Required Digital Microfluidic System Toward Point-of-Care Nucleic Acid Amplification Test Application for Developing Countries
,”
Microsyst. Technol.
,
26
(
6
), pp.
1863
1873
.10.1007/s00542-019-04733-4
15.
Wickham
,
H.
,
Chang
,
W.
,
Henry
,
L.
,
Pedersen
,
T. L.
,
Takahashi
,
K.
,
Wilke
,
C.
,
Woo
,
K.
, et al.,
2024
, “
Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics
,” Springer, Cham, Switzerland, accessed Apr. 30, 2024, https://cran.r-project.org/web/packages/ggplot2/index.html
16.
Singpanomchai
,
N.
,
Akeda
,
Y.
,
Tomono
,
K.
,
Tamaru
,
A.
,
Santanirand
,
P.
, and
Ratthawongjirakul
,
P.
,
2019
, “
Naked Eye Detection of the Mycobacterium Tuberculosis Complex by Recombinase Polymerase Amplification—SYBR Green I Assays
,”
J. Clin. Lab. Anal.
,
33
(
2
), p.
e22655
.10.1002/jcla.22655
17.
Bachmann
,
B.
,
Lüke
,
W.
, and
Hunsmann
,
G.
,
1990
, “
Improvement of PCR Amplified DNA Sequencing With the Aid of Detergents
,”
Nucl. Acids Res.
,
18
(
5
), p.
1309
.10.1093/nar/18.5.1309
18.
Lorenz
,
T. C.
,
2012
, “
Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
,”
J. Visualized Exp.
, (
63
), p.
3998
.https://pmc.ncbi.nlm.nih.gov/articles/PMC4846334/
19.
Varadaraj
,
K.
, and
Skinner
,
D. M.
,
1994
, “
Denaturants or Cosolvents Improve the Specificity of PCR Amplification of a G + C-Rich DNA Using Genetically Engineered DNA Polymerases
,”
Gene
,
140
(
1
), pp.
1
5
.10.1016/0378-1119(94)90723-4
20.
Kalsi
,
S.
,
Valiadi
,
M.
,
Tsaloglou
,
M.-N.
,
Parry-Jones
,
L.
,
Jacobs
,
A.
,
Watson
,
R.
,
Turner
,
C.
, et al.,
2015
, “
Rapid and Sensitive Detection of Antibiotic Resistance on a Programmable Digital Microfluidic Platform
,”
Lab Chip
,
15
(
14
), pp.
3065
3075
.10.1039/C5LC00462D
You do not currently have access to this content.