The introduction of minimally invasive surgery (MIS) into the operating room has led to significant advantages over conventional open surgery. Furthermore, the migration toward robot-assisted MIS over the past decade has provided additional advantages. However, the lack of haptic feedback in these tele-operated robotic surgical systems has inhibited the surgeon’s ability to diagnose tissue as healthy or unhealthy, thereby creating a need for force feedback in these systems. This paper presents the design and development of a compact and modular laparoscopic grasper with tridirectional force measurement capability for applications in robot-assisted MIS. The instrumented laparoscopic grasper is capable of measuring the normal grasping force, as well as the manipulation forces (horizontal and vertical) during grasping tasks. The grasper also has a modular design that allows for easy conversion between different surgical modalities, such as grasping, cutting, and dissecting. Preliminary tele-operative experiments with force feedback capability through a haptic feedback device for artificial tissue characterization as well as knot tightening experiments indicate the capability of this grasper.

1.
Sukthankar
,
S. M.
, and
Reddy
,
N. P.
, 1994, “
Towards Force Feedback in Laparoscopic Surgical Tools
,”
International Conference of the IEEE Engineering in Medicine and Biology Society
, Vol.
2
, pp.
1041
1042
.
2.
Hu
,
T.
,
Tholey
,
G.
,
Desai
,
J. P.
, and
Castellanos
,
A. E.
, 2004, “
Evaluation of a Laparoscopic Grasper With Force Feedback
,”
Surg. Endosc
0930-2794,
18
(
5
), pp.
863
867
.
3.
Scilingo
,
E.
,
DeRossi
,
D.
,
Bicchi
,
A.
, and
Iacconi
,
P.
, 1997, “
Sensor and Devices to Enhance the Performance of a Minimally Invasive Surgery Tool for Replicating Surgeon’s Haptic Perception of the Manipulated Tissues
,”
IEEE International Conference on Engineering in Medicine and Biology
, Vol.
3
, pp.
961
964
.
4.
Bicchi
,
A.
,
Canepa
,
G.
,
DeRossi
,
D.
,
Iacconi
,
P.
, and
Scilingo
,
E.
, 1996, “
A Sensor-Based Minimally Invasive Surgery Tool for Detecting Tissue Elastic Properties
,”
IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
884
888
.
5.
Morimoto
,
A. K.
,
Foral
,
R. D.
,
Kuhlman
,
J. L.
,
Zucker
,
K. A.
,
Curet
,
M. J.
,
Bocklage
,
R.
,
MacFarlane
,
T. I.
, and
Kory
,
L.
, 1997, “
Force Sensor for Laparoscopic Babcock
,”
Medicine Meets Virtual Reality
, pp.
354
361
.
6.
Tavakoli
,
M.
,
Patel
,
R. V.
, and
Moallem
,
M.
, 2003, “
A Force Reflective Master-Slave System for Minimally Invasive Surgery
,”
IEEE International Conference on Intelligent Robots and Systems
,
Las Vegas, NV
, pp.
3077
3082
.
7.
Dingshoft
,
V. V. H. t.
,
Lazeroms
,
M.
,
Ham
,
A. v. d.
,
Jongkind
,
W.
, and
Hondred
,
G.
, 1996, “
Force Reflection for a Laparoscopic Forceps
,”
18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Vol.
1
, pp.
210
211
.
8.
Hoshino
,
T.
,
Ishigaki
,
H.
,
Konishi
,
Y.
,
Kondo
,
K.
,
Suzuki
,
T.
,
Saito
,
T.
,
Kakuta
,
N.
,
Wagatsuma
,
A.
, and
Mabuchi
,
K.
, 2001, “
A Master-Slave Manipulation System With a Force-Feedback Function for Endoscopic Surgery
,”
International Conference of the IEEE Engineering in Medicine and Biology Society
,
Istanbul, Turkey
, pp.
3446
3449
.
9.
Hannaford
,
B.
,
Trujillo
,
J.
,
Sinanan
,
M.
,
Moreyra
,
M.
,
Rosen
,
J.
,
Brown
,
J.
,
Lueshke
,
R.
, and
MacFarlane
,
M.
, 1998, “
Computerized Endoscopic Surgical Grasper
,”
Medicine Meets Virtual Reality
, Vol.
50265
.
10.
Madhani
,
A. J.
,
Niemeyer
,
G.
, and
Salisbury
,
J. K.
, 1998, “
The Black Falcon: A Teleoperated Surgical Instrument for Minimally Invasive Surgery
,”
IEEE/RSJ International Conference on Intelligent Robotic Systems
, Vol.
2936
.
11.
Rosen
,
J.
,
Brown
,
J. D.
,
Chang
,
L.
,
Barreca
,
M.
,
Sinanan
,
M.
, and
Hannaford
,
B.
, 2002, “
The BlueDRAGON–A System for Measuring the Kinematics and Dynamics of Minimally Invasive Surgical Tools In-Vivo
,”
IEEE International Conference on Robotics and Automation
,
Washington, DC
, pp.
1876
1881
.
12.
Tholey
,
G.
,
Pillarisetti
,
A.
, and
Desai
,
J. P.
, 2004, “
On-Site Three Dimensional Force Sensing Capability in a Laparoscopic Grasper
,”
Ind. Robot
,
31
(
6
), pp.
509
518
. 0143-991X
13.
Tholey
,
G.
,
Desai
,
J. P.
, and
Castellanos
,
A. E.
, 2003, “
Evaluating the Role of Vision and Force Feedback in Minimally Invasive Surgery: New Automated Laparoscopic Grasper and A Case Study
,”
Medical Image Computing and Computer Assisted Intervention (MICCAI)
,
Montreal, Canada
, pp.
198
205
.
14.
Prasad
,
S. K.
,
Kitagawa
,
M.
,
Fischer
,
G. S.
,
Zand
,
J.
,
Talamini
,
M. A.
,
Taylor
,
R. H.
, and
Okamura
,
A. M.
, 2003, “
A Modular 2-DOF Force-Sensing Instrument for Laparoscopic Surgery
,”
Medical Image Computing and Computer-Assisted Intervention
,
Montreal, Canada
, pp.
279
286
.
15.
Payandeh
,
S.
, and
Li
,
T.
, 2003, “
Towards New Designs of Haptic Devices for Minimally Invasive Surgery
,”
Computer Assisted Radiology and Surgery
,
London, UK
, pp.
775
781
.
16.
Rosen
,
J.
,
MacFarlane
,
M.
,
Richard
,
C.
,
Hannaford
,
B.
, and
Sinanan
,
M.
, 1999, “
Surgeon-Tool Force/Torque Signatures–Evaluation of Surgical Skills in Minimally Invasive Surgery
,”
Medicine Meets Virtual Reality
,
San Francisco, CA
, pp.
290
296
.
17.
Tholey
,
G.
, and
Desai
,
J. P.
, 2005, “
A General Purpose 7 DOF Haptic Interface
,”
First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
,
Pisa, Italy
, pp.
582
583
.
18.
Tholey
,
G.
,
Desai
,
J. P.
, and
Castellanos
,
A. E.
, 2004, “
Force Feedback Plays a Significant Role in Minimally Invasive Surgery: Results and Analysis
,”
Ann. Surg.
,
241
(
1
), pp.
102
109
. 0003-4932
You do not currently have access to this content.