The purpose of this study was to design and test a magnetic resonance (MR)-compatible device to induce either shortening or lengthening muscle contractions for use during dynamic MR imaging. The proposed device guides the knee through cyclic flexion-extension, while either elastic or inertial loads are imposed on the hamstrings. Ten subjects were tested in a motion capture laboratory to evaluate the repeatability of limb motion and imposed loads. Image data were subsequently obtained for all ten subjects using cine phase contrast imaging. Subjects achieved 30deg of knee joint motion, with individual subjects remaining within 1deg of their average motion across 56 repeated cycles. The maximum hamstring activity and loading occurred when the knee was flexed for the elastic loading condition (shortening contraction), and extended for the inertial loading condition (lengthening contraction). Repeat MR image acquisitions of the same loading condition resulted in similar tissue velocities, while spatial variations in velocity data were clearly different between loading conditions. The proposed device can enable dynamic imaging of the muscle under different types of loads, which has the potential to improve our understanding of basic muscle mechanics, identify potential causes of muscle injury, and provide a basis for quantitatively assessing injury effects at the tissue level. Slight modifications to the device design and/or subject positioning could allow for imaging of the quadriceps or the knee.

1.
Pappas
,
G. P.
,
Asakawa
,
D. S.
,
Delp
,
S. L.
,
Zajac
,
F. E.
, and
Drace
,
J. E.
, 2002, “
Nonuniform Shortening in the Biceps Brachii During Elbow Flexion
,”
J. Appl. Physiol.
8750-7587,
92
(
6
), pp.
2381
2389
.
2.
Finni
,
T.
,
Hodgson
,
J. A.
,
Lai
,
A. M.
,
Edgerton
,
V. R.
, and
Sinha
,
S.
, 2003, “
Nonuniform Strain of Human Soleus Aponeurosis-Tendon Complex During Submaximal Voluntary Contractions In Vivo
,”
J. Appl. Physiol.
8750-7587,
95
(
2
), pp.
829
837
.
3.
Zajac
,
F. E.
, 1989, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
0278-940X,
17
(
4
), pp.
359
411
.
4.
Zhong
,
X.
,
Epstein
,
F. H.
,
Spottiswoode
,
B. S.
,
Helm
,
P. A.
, and
Blemker
,
S. S.
, 2008, “
Imaging Two-Dimensional Displacements and Strains in Skeletal Muscle During Joint Motion by Cine DENSE MR
,”
J. Biomech.
0021-9290,
41
(
3
), pp.
532
540
.
5.
Zhou
,
H.
, and
Novotny
,
J. E.
, 2007, “
Cine Phase Contrast MRI to Measure Continuum Lagrangian Finite Strain Fields in Contracting Skeletal Muscle
,”
J. Magn. Reson Imaging
1053-1807,
25
(
1
), pp.
175
184
.
6.
Asakawa
,
D. S.
,
Pappas
,
G. P.
,
Blemker
,
S. S.
,
Drace
,
J. E.
, and
Delp
,
S. L.
, 2003, “
Cine Phase-Contrast Magnetic Resonance Imaging as a Tool for Quantification of Skeletal Muscle Motion
,”
Semin. Musculoskelet. Radiol.
,
7
(
4
), pp.
287
295
. 1089-7860
7.
Drace
,
J. E.
, and
Pelc
,
N. J.
, 1994, “
Skeletal Muscle Contraction: Analysis With Use of Velocity Distributions From Phase-Contrast MR Imaging
,”
Radiology
0033-8419,
193
(
2
), pp.
423
429
.
8.
Hidler
,
J.
,
Hodics
,
T.
,
Xu
,
B.
,
Dobkin
,
B.
, and
Cohen
,
L. G.
, 2006, “
MR Compatible Force Sensing System for Real-Time Monitoring of Wrist Moments During FMRI Testing
,”
J. Neurosci. Methods
0165-0270,
155
(
2
), pp.
300
307
.
9.
Komi
,
P. V.
, 1984, “
Physiological and Biomechanical Correlates of Muscle Function: Effects of Muscle Structure and Stretch-Shortening Cycle on Force and Speed
,”
Exerc Sport Sci. Rev.
0091-6331,
12
, pp.
81
122
.
10.
Lieber
,
R. L.
, and
Friden
,
J.
, 2002, “
Mechanisms of Muscle Injury Gleaned From Animal Models
,”
Am. J. Phys. Med. Rehabil.
0894-9115,
81
(
11
), pp.
S70
S79
.
11.
Noonan
,
T. J.
, and
Garrett
,
W. E.
, Jr.
, 1999, “
Muscle Strain Injury: Diagnosis and Treatment
,”
J. Am. Acad. Orthop. Surg.
1067-151X,
7
(
4
), pp.
262
269
.
12.
Thelen
,
D. G.
,
Chumanov
,
E. S.
,
Sherry
,
M. A.
, and
Heiderscheit
,
B. C.
, 2006, “
Neuromusculoskeletal Models Provide Insights Into the Mechanisms and Rehabilitation of Hamstring Strains
,”
Exerc Sport Sci. Rev.
0091-6331,
34
(
3
), pp.
135
141
.
13.
Shellock
,
F. G.
, 2002, “
Magnetic Resonance Safety Update 2002: Implants and Devices
,”
J. Magn. Reson Imaging
1053-1807,
16
(
5
), pp.
485
496
.
14.
Hoy
,
M. G.
,
Zajac
,
F. E.
, and
Gordon
,
M. E.
, 1990, “
A Musculoskeletal Model of the Human Lower Extremity: The Effect of Muscle, Tendon, and Moment Arm on the Moment-Angle Relationship of Musculotendon Actuators at the Hip, Knee, and Ankle
,”
J. Biomech.
0021-9290,
23
(
2
), pp.
157
169
.
15.
Aletras
,
A. H.
,
Ding
,
S.
,
Balaban
,
R. S.
, and
Wen
,
H.
, 1999, “
DENSE: Displacement Encoding With Stimulated Echoes in Cardiac Functional MRI
,”
J. Magn. Reson.
1090-7807,
137
(
1
), pp.
247
252
.
16.
Zhu
,
Y.
,
Drangova
,
M.
, and
Pelc
,
N. J.
, 1997, “
Estimation of Deformation Gradient and Strain From Cine-PC Velocity Data
,”
IEEE Trans. Med. Imaging
0278-0062,
16
(
6
), pp.
840
851
.
17.
Drace
,
J. E.
, and
Pelc
,
N. J.
, 1994, “
Measurement of Skeletal Muscle Motion In Vivo With Phase-Contrast MR Imaging
,”
J. Magn. Reson Imaging
1053-1807,
4
, pp.
157
163
.
18.
Asakawa
,
D. S.
,
Nayak
,
K. S.
,
Blemker
,
S. S.
,
Delp
,
S. L.
,
Pauly
,
J. M.
,
Nishimura
,
D. G.
, and
Gold
,
G. E.
, 2003, “
Real-Time Imaging of Skeletal Muscle Velocity
,”
J. Magn. Reson Imaging
1053-1807,
18
(
6
), pp.
734
739
.
19.
Silder
,
A.
,
Heiderscheit
,
B. C.
,
Thelen
,
D. G.
,
Enright
,
T.
, and
Tuite
,
M. J.
, 2008, “
MR Observations of Long-Term Musculotendon Remodeling Following a Hamstring Strain Injury
,”
Skeletal Radiol.
0364-2348,
37
(
12
), pp.
1101
1109
.
20.
Asakawa
,
D. S.
,
Blemker
,
S. S.
,
Gold
,
G. E.
, and
Delp
,
S. L.
, 2006, “
Dynamic Magnetic Resonance Imaging of Muscle Function After Surgery
,”
Skeletal Radiol.
0364-2348,
35
(
12
), pp.
885
886
.
You do not currently have access to this content.