Measurement of arterial distensibility is very important in cardiovascular diagnosis for early detection of coronary heart disease and possible prediction of future cardiac events. Conventionally, B-mode ultrasound imaging systems have been used along with expensive vessel wall tracking systems for estimation of arterial distension and calculation of various estimates of compliance. We present a simple instrument for noninvasive in vivo evaluation of arterial compliance using a single element ultrasound transducer. The measurement methodology is initially validated using a proof of concept pilot experiment using a commercial ultrasound pulser-receiver. A prototype system is then developed around a PXI chassis using LABVIEW software. The virtual instrument employs a dynamic threshold algorithm to identify the artery walls and then utilizes a correlation based tracking technique to estimate arterial distension. The end-diastolic echo signals are averaged to reduce error in the automated diameter measurement process. The instrument allows automated measurement of the various measures of arterial compliance with minimal operator intervention. The performance of the virtual instrument was first analyzed using simulated data sets to establish the maximum measurement accuracy achievable under different input signal to noise ratio (SNR) levels. The system could measure distension with accuracy better than 10μm for positive SNR. The measurement error in diameter was less than 1%. The system was then thoroughly evaluated by the experiments conducted on phantom models of the carotid artery and the accuracy and resolution were found to meet the requirements of the application. Measurements performed on human volunteers indicate that the instrument can measure arterial distension with a precision better than 5%. The end-diastolic arterial diameter can be measured with a precision better than 2% and an accuracy of 1%. The measurement system could lead to the development of small, portable, and inexpensive equipment for estimation of arterial compliance suitable in mass screening of “at risk” patients. The automated compliance measurement algorithm implemented in the instrument requires minimal operator input. The instrument could pave the way for dedicated systems for arterial compliance evaluation targeted at the general medical practitioner who has little or no expertise in vascular ultrasonography.

1.
Mandal
,
S.
,
Saha
,
J. B.
,
Mandal
,
S. C.
,
Bhattacharya
,
R. N.
,
Chakraborty
,
M.
, and
Pal
,
P. P.
, 2009, “
Prevalance of Ischemic Heart Disease Among Urban Population of Silguri, West Bengal
,”
Indian Journal of Clinical Medicine
,
34
(
1
), pp.
19
23
.
2.
Singh
,
R. B.
,
Sharma
,
J. P.
,
Rastogi
,
V.
,
Raghuvanshi
,
R. S.
,
Moshiri
,
M.
,
Verma
,
S. P.
, and
Janus
,
E. D.
, 1997, “
Prevalence of Coronary Artery Disease and Coronary Risk Factors in Rural and Urban Populations of North India
,”
Eur. Heart J.
0195-668X,
18
, pp.
1728
1735
.
3.
Begom
,
R.
, and
Singh
,
R. B.
, 1995, “
Prevalence of Coronary Artery Disease and Its Risk Factors in the Urban Population of South and North India
,”
Acta Cardiol.
0001-5385,
50
(
3
), pp.
227
240
.
4.
Zamir
,
M.
, 2005,
The Physics of Coronary Blood Flow
,
Springer
,
New York
.
5.
Kallikazaros
,
I.
,
Tsioufis
,
C.
,
Sideris
,
S.
,
Stefanadis
,
C.
, and
Toutouzas
,
P.
, 1999, “
Carotid Artery Disease as a Marker for the Presence of Severe Coronary Artery Disease in Patients Evaluated for Chest Pain
,”
Stroke
0039-2499,
30
, pp.
1002
1007
.
6.
Giannattasio
,
C.
,
Achilli
,
F.
,
Failla
,
M.
,
Capraa
,
A.
, and
Mancia
,
G.
, 2004, “
Arterial Stiffness in Heart Failure Patients: Dependance on Diastolic Dysfunction and Plasma Aldosterone Levels
,”
Eur. Heart J.
0195-668X,
6
, pp.
F30
F34
.
7.
Eigenbrodt
,
M. L.
,
Sukhija
,
R.
,
Rose
,
K. M.
,
Tracy
,
R. E.
,
Couper
,
D. J.
,
Evans
,
G. W.
,
Bursac
,
Z.
, and
Mehta
,
J. L.
, 2007, “
Common Carotid Artery Wall Thickness and External Diameter as Predictors of Prevalent and Incident Cardiac Events in a Large Population Study
,”
Cardiovasc. Ultrasound
,
5
(
11
).
8.
Dijk
,
J. M.
,
Algra
,
A.
,
Graaf
,
Y. V.
,
Grobbee
,
D. E.
, and
Bots
,
M. L.
, 2005, “
Carotid Stiffness and the Risk of New Vascular Events in Patients With Manifest Cardiovascular Disease: The SMART Study
,”
Eur. Heart J.
0195-668X,
26
, pp.
1213
1220
.
9.
Simons
,
P. C.
,
Algra
,
A.
,
Bots
,
M. L.
,
Grobbee
,
D. E.
, and
Graaf
,
Y. V.
, 1999, “
Common Carotid Intima-Media Thickness and Arterial Stiffness Indicators of Cardiovascular Risk in High-Risk Patients the Smart Study (Second Manifestations of Arterial Disease)
,”
Circulation
0009-7322,
100
, pp.
951
957
.
10.
Oliver
,
J. J.
, and
Webb
,
D. J.
, 2003, “
Noninvasive Assessment of Arterial Stiffness and Risk of Atherosclerotic Events
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
23
, pp.
554
566
.
11.
Liang
,
Y. -L.
,
Teede
,
H.
,
Kotsopoulos
,
D.
,
Shiel
,
L.
,
Cameron
,
J. D.
,
Dart
,
A. M.
, and
McGrath
,
B. P.
, 1998, “
Non-Invasive Measurements of Arterial Structure and Function: Repeatability, Interrelationships and Trial Sample Size
,”
Clin. Sci.
0323-5084,
95
, pp.
669
679
.
12.
Reneman
,
R. S.
,
Meinders
,
J. M.
, and
Hoeks
,
A. P.
, 2005, “
Non-Invasive Ultrasound in Arterial Wall Dynamics in Humans: What Have We Learned and What Remains to be Solved
,”
Eur. Heart J.
0195-668X,
26
, pp.
960
966
.
13.
Popele
,
N. M.
,
Grobbee
,
D. E.
,
Bots
,
M. L.
,
Asmar
,
R.
,
Topouchian
,
J.
,
Reneman
,
R. S.
,
Hoeks
,
A. P.
,
Kuip
,
D. A.
,
Hofman
,
A.
, and
Witteman
,
J. C.
, 2001, “
Association Between Arterial Stiffness and Atherosclerosis: The Rotterdam Study
,”
Stroke
0039-2499,
32
, pp.
454
460
.
14.
Dijk
,
J. M.
,
Graaf
,
Y. V.
,
Grobbee
,
D. E.
, and
Bots
,
M. L.
, 2004, “
Carotid Stiffness Indicates Risk of Ischemic Stroke and TIA in Patients With Internal Carotid Artery Stenosis: The SMART Study
,”
Stroke
0039-2499,
35
, pp.
2258
2262
.
15.
Eigenbrodt
,
M. L.
,
Bursac
,
Z.
,
Rose
,
K. M.
,
Couper
,
D. J.
,
Tracy
,
R. E.
,
Evans
,
G. W.
,
Brancati
,
F. L.
, and
Mehta
,
J. L.
, 2006, “
Common Carotid Arterial Interadventitial Distance (Diameter) as an Indicator of the Damaging Effects of Age and Atherosclerosis, a Cross-Sectional Study of the Atherosclerosis Risk in Community Cohort Limited Access Data (ARICLAD), 1987–89
,”
Cardiovasc. Ultrasound
,
4
(
1
).
16.
Jensen-Urstad
,
K.
,
Jensen-Urstad
,
M.
, and
Johansson
,
J.
, 1999, “
Carotid Artery Diameter Correlates With Risk Factors for Cardiovascular Disease in a Population of 55-Year-Old Subjects
,”
Stroke
0039-2499,
30
, pp.
1572
1576
.
17.
Jegelevièius
,
D.
, and
Lukoševièius
,
A.
, 2002, “
Ultrasonic Measurements of Human Carotid Artery Wall Intima-Media Thickness
,”
Ultragarsas
,
43
(
2
), pp.
43
47
.
18.
Gtierrez
,
M.
,
Pilon
,
P.
,
Lage
,
S.
,
Kopel
,
L.
,
Carvalho
,
R.
, and
Furuie
,
S.
, 2002, “
Automatic Measurement of Carotid Diameter and Wall Thickness in Ultrasound Images
,”
Proceedings of the Computers in Cardiology
,
A.
Murray
, ed., Vol.
29
, pp.
359
362
.
19.
Stoitsis
,
J.
,
G.
,
S.
,
Kendros
,
S.
, and
Nikita
,
K. S.
, 2008, “
Automated Detection of the Carotid Artery Wall in B-Mode Ultrasound Images Using Active Contours Initialized by the Hough Transform
,”
Proceedings of the 30th Annual International IEEE EMBS Conference
,
K.
Chon
,
A.
Lain
,
P.
Bonato
,
P.
Vicini
,
M.
Khoo
,
R.
Buerta
,
B.
Layton
,
J.
Patton
,
D.
Panescu
,
N.
Lovell
, and
J.
Monzon
, eds., pp.
3146
3149
.
20.
Kawamura
,
Y.
,
Yokota
,
Y.
, and
Nogata
,
F.
, 2008, “
Estimation of Carotid Diameter With Heartbeat on Longitudinal B-Mode Ultrasonic Images
.”
Proceedings of the 30th Annual International IEEE EMBS Conference
,
K.
Chon
,
A.
Lain
P.
Bonato
,
P.
Vicini
,
M.
Khoo
,
R.
Buerta
,
B.
Layton
,
J.
Patton
,
D.
Panescu
,
N.
Lovell
, and
J.
Monzon
, eds., pp.
3142
3145
.
21.
Brands
,
P. J.
,
Hoeks
,
A. P.
,
Willigers
,
J.
,
Willekes
,
C.
, and
Reneman
,
R. S.
, 1999, “
An Integrated System for Non-Invasive Assessment of Vessel Wall and Hemodynamic Properties of Large Arteries by Means of Ultrasound
,”
Eur. J. Ultrasound
0929-8266,
9
, pp.
257
266
.
22.
Bambi
,
G.
,
Morganti
,
T.
,
Ricci
,
S.
,
Boni
,
E.
,
Guidi
,
F.
,
Palombo
,
C.
, and
Tortoli
,
P.
, 2004, “
A Novel Ultrasound Instrument for Investigation of Arterial Mechanics
,”
Ultrasonics
0041-624X,
42
, pp.
731
737
.
23.
Reneman
,
R. S.
,
Merode
,
T. V.
,
Brands
,
P. J.
, and
Hoeks
,
A. P. G.
, 1992, “
Inhomogeneties in Arterial Wall Properties Under Normal and Pathological Conditions
,”
J. Hypertens.
0263-6352,
10
, pp.
S35
S40
.
24.
Reneman
,
R. S.
, and
Hoeks
,
A. P.
, 2000, “
Noninvasive Vascular Ultrasound: An Asset in Vascular Medicine
,”
Cardiovasc. Res.
0008-6363,
45
(
1
), pp.
27
35
.
25.
Joseph
,
J.
, and
Jayashankar
,
V.
, 2008, “
A Virtual Instrument for Real Time In Vivo Measurement of Carotid Artery Compliance
,”
Proceedings of the 30th Annual International IEEE EMBS Conference
,
K.
Chon
,
A.
Lain
P.
Bonato
,
P.
Vicini
,
M.
Khoo
,
R.
Buerta
,
B.
Layton
,
J.
Patton
,
D.
Panescu
,
N
Lovell
, and
J.
Monzon
, eds.,
IEEE
,
Vancouver, BC, Canada
, pp.
2281
2284
.
26.
Joseph
,
J.
,
Jayashankar
,
V.
, and
Kumar
,
V. J.
, 2009, “
A PC Based System for Non-Invasive Measurement of Carotid Artery Compliance
,”
Proceedings of I2MTC ‘09
, Singapore,
S.
Engelberg
and
R.
Zoughi
, eds., pp.
680
685
.
27.
Joseph
,
J.
, and
Jayashankar
,
V.
, 2008, “
Virtual Instrument for Ultrasound Signal Processing
,”
Proceedings of the Ninth National Conference on Technological Trends
, Trivandrum, India.
28.
Joseph
,
J.
, and
Jayashankar
,
V.
, 2009, “
An Improved Echo Tracking Algorithm for Arterial Distensibility Measurements
,”
Proceedings of the Second International Conference on Biomedical and Pharmaceutical Engineering
, Singapore.
29.
Kumar
,
K.
,
Jayashankar
,
V.
,
Suresh
,
S.
,
Andrews
,
M.
, and
Mishra
,
A.
, 2008, “
Improved Diagnosis of Breast Tumor By Combing Ultrasound Elastography and Tissue Characterization
,”
Proceedings of BIOMED
, Kuala Lumpur, Malaysia,
A.
Hierlemann
, ed., pp.
579
582
.
30.
Hein
,
I.
, and
O’Brien
,
W. D.
, 1993, “
Current Time-Domain Methods for Assessing Tissue Motion by Analysis From Reflected Ultrasound Echoes—A Review
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
40
(
2
), pp.
84
102
.
You do not currently have access to this content.